毛片在线视频观看,一级日韩免费大片,在线网站黄色,澳门在线高清一级毛片

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 公文素材 > 范文素材 > 中考數(shù)學(xué)幾何證明題

中考數(shù)學(xué)幾何證明題

網(wǎng)站:公文素材庫 | 時間:2019-05-22 10:59:27 | 移動端:中考數(shù)學(xué)幾何證明題
第一篇:中考數(shù)學(xué)幾何證明題

中考幾何證明題

一、證明兩線段相等1、真題再現(xiàn)

18.如圖3,在梯形abcd中,ad∥bc,ea⊥ad,m是ae上一點,

2.如圖,在△abc中,點p是邊ac上的一個動點,過點p作直線mn∥bc,設(shè)mn交

∠bca的平分線于點e,交∠bca的外角平分線于點f. (1)求證:pe=pf;

(2)*當點p在邊ac上運動時,四邊形bcfe可能是菱形嗎?說明理由;

ap 3

(3)*若在ac邊上存在點p,使四邊形aecf是正方形,且.求此時∠a

bc2

的大。

c

二、證明兩角相等、三角形相似及全等 1、真題再現(xiàn)

∠bae?∠mce,∠mbe?45.

(1)求證:be?me. (2)若ab?7,求mc的長.

b

n

e

圖3

21、(8分)如圖11,一張矩形紙片abcd,其中ad=8cm,ab=6cm,先沿對角線bd折疊,點c落在點c′的位置,bc′交ad于點g. (1)求證:ag=c′g;

(2)如圖12,再折疊一次,使點d與點a重合,的折痕en,en角ad于m,求em的長.

2、類題演練

1、如圖,分別以rt△abc的直角邊ac及斜邊ab向外作等邊△acd、等邊△abe.已知∠bac=30o,ef⊥ab,垂足為f,連結(jié)df. e (1)試說明ac=ef;

(2)求證:四邊形adfe是平行四邊形.

22、(9分)ab是⊙o的直徑,點e是半圓上一動點(點e與點a、b都不重合),

點c是be延長線上的一點,且cd⊥ab,垂足為d,cd與ae交于點h,點h與點a不重合。

(1)(5分)求證:△ahd∽△cbd

(2)(4分)連hb,若cd=ab=2,求hd+ho的值。

a

o d

b

e 20.如圖9,四邊形abcd是正方形,be⊥bf,be=bf,ef與bc交于點g。 (1)求證:△abe≌△cbf;(4分)

(2)若∠abe=50o,求∠egc的大小。(4分)

c

b

圖9

第20題圖

如圖8,△aob和△cod均為等腰直角三角形,∠aob=∠cod=90o,d在ab上. (1)求證:△aoc≌△bod;(4分) (2)若ad=1,bd=2,求cd的長.(3分)

o

圖8 2、類題演練

1、(肇慶201*) (8分)如圖,已知∠acb=90°,ac=bc,be⊥ce于e,ad⊥ce于d,

ce與ab相交于f. (1)求證:△ceb≌△adc; e (2)若ad=9cm,de=6cm,求be及ef的長.

ac

bc、cd、da上的2、(佛山201*)已知,在平行四邊形abcd中,efgh分別是ab、

點,且ae=cg,bf=dh,求證:?aeh≌?cgf

b f

c

3、(茂名201*)如圖,已知oa⊥ob,oa=4,ob=3,以ab為邊作矩形c abcd,使

ad=a,過點d作de垂直oa的延長線交于點e. (1)證明:△oab∽△eda; bd (2)當a為何值時,△oab≌△eda?*請說明理由,并求此時點 c到oe的距離. o a e

圖1

三、證明兩直線平行 1、真題再現(xiàn)

(201*年)22.(10分)如圖10-1,在平面直角坐標系xoy中,點m在x軸的正半軸上, ⊙m交x軸于 a、b兩點,交y軸于c、d兩點,且c為ae的中點,ae交y軸于g點,若點a的坐標為(-2,0),ae?8 (1)(3分)求點c的坐標.

(2)(3分)連結(jié)mg、bc,求證:mg∥bc

圖10-1

2、類題演練

1、(湛江201*) (10分)如圖,在□abcd中,點e、f是對角線bd上的兩點,且be=df.

d

求證:(1)△abe≌△cdf;(2)ae∥cf.c

四、證明兩直線互相垂直 1、真題再現(xiàn)

18.(7分)如圖7,在梯形abcd中,ad∥bc, ab?dc?ad,

?adc?120.

(1)(3分)求證:bd?dc

b

c

bd (2)(4分)若ab?4,求梯形abcd的面積

圖7

o a

e 圖2

2、類題演練

1.已知:如圖,在△abc中,d是ab邊上一點,⊙o過d、b、c三點,?doc?2?acd?90?.

(1)求證:直線ac是⊙o的切線;

(2)如果?acb?75?,⊙o的半徑為2,求bd的長.

2、如圖,以△abc的一邊ab為直徑作⊙o,⊙o與bc邊的交點d恰好為bc的中點.過點d作⊙o的切線交ac邊于點e.

(1)求證:de⊥ac;

(2)若∠abc=30°,求tan∠bco的值.(第2題圖) 3.(201*年深圳二模) 如圖所示,矩形abcd中,點e在cb的延長線上,使ce=ac,連結(jié)ae,點f是ae的中點,連結(jié)bf、df,求證:bf⊥

df

cd于f,若⊙o的半徑為r求證:ae·af=2 r

2、類題演練

1.在△abc中,ac=bc,∠acb=90°,d、e是直線ab上兩點.∠dce=45° (1)當ce⊥ab時,點d與點a重合,顯然de=ad+be(不必證明) (2)如圖,當點d不與點a重合時,求證:de=ad+be

(3)當點d在ba的延長線上時,(2)中的結(jié)論是否成立?畫出圖形,說明理由.

2.(本小題滿分10分)

如圖,已知△abc,∠acb=90o,ac=bc,點e、f在ab上,∠ecf=45o,(1)求證:△acf∽△bec(5分)

(2)設(shè)△abc的面積為s,求證:af·be=2s(3)

3.(2)如圖,ab為⊙o的直徑,bc切⊙o于b,ac交⊙o于d.

①求證:ab=ad·ac. a ②當點d運動到半圓ab什么位置時,△abc為等腰直角三角形,為什么?

五、證明比例式或等積式 1、真題再現(xiàn)

1.已知⊙o的直徑ab、cd互相垂直,弦ae交

第3題圖

b

第3(2)題圖

c

4、(本小題滿分9分)

如圖,ab為⊙o的直徑,劣弧bc?be,bd∥ce,連接ae并延長交bd于d.

求證:(1)bd是⊙o的切線;

2、類題演練

1、如圖5,在等腰梯形abcd中,ad∥bc.

求證:∠a+∠c=180°

·ad. (2)ab?ac

b

第4題圖

??

5. 如圖所示,⊙o中,弦ac、bd交于e,bd?2ab。

2ab?ae·ac;(1)求證:

,2、如圖,在rt△abc中,?c?90°點e在斜邊ab上,

以ae為直徑的⊙o與bc相切于點d. (1)求證:ad平分?bac. (2)若ac?3,ae?4.

①求ad的值;②求圖中陰影部分的面積.

3、如圖,ab是⊙o的直徑,點c在ba的延長線上,直

線cd與⊙o相切于點d,弦df⊥ab于點e,線段cd?10,連接bd.

(1)求證:?cde?2?b;

(2)若bd:ab?2,求⊙o的半徑及df的長.

七、證明線段的和、差、倍、分 1、真題再現(xiàn)

22、(9分)ab是⊙o的直徑,點e是半圓上一動點(點e與點a、b都不重合),

點c是be延長線上的一點,且cd⊥ab,垂足為d,cd與ae交于點h,點h與

(2)延長eb到f,使ef=cf,試判斷cf與⊙o的位置關(guān)系,并說明理由。

六、證明角的和、差、倍、分 1、真題再現(xiàn)

21.(本題8分)如圖10,ab是⊙o的直徑,ab=10, dc切⊙o于點c,ad⊥dc,垂足為d,ad交⊙o于點e。 (1)求證:ac平分∠bad;(4分) 3

(2)若sin∠bec=,求dc的長。(4分)

第3題圖

點a不重合。

(1)(5分)求證:△ahd∽△cbd

(2)(4分)連hb,若cd=ab=2,求hd+ho的值。

圖10

c

2、類題演練

1.(1)如圖1,已知矩形abcd中,點e是bc上的一動點,過點e作ef⊥bd于點

f,eg⊥ac于點g,ch⊥bd于點h,試證明ch=ef+eg;

圖1

d

g

圖3

(2) 若點e在bc的延長線上,如圖2,過點e作ef⊥bd于點f,eg⊥ac的延長線于點g,ch⊥bd于點h, 則ef、eg、ch三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;

(3) 如圖3,bd是正方形abcd的對角線,l在bd上,且bl=bc, 連結(jié)cl,點e是

cl上任一點, ef⊥bd于點f,eg⊥bc于點g,猜想ef、eg、bd之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;(4) 觀察圖1、圖2、圖3的特性,請你根據(jù)這一特性構(gòu)造一個圖形,使它仍然

具有ef、eg、ch這樣的線段,并滿足(1)或(2)的結(jié)論,寫出相關(guān)題設(shè)的條件和結(jié)論. 2. 設(shè)點e是平行四邊形abcd的邊ab的中點,f是bc邊上一點,線段de和af相交于點p,點q在線段de上,且aq∥pc. (1)證明:pc=2aq.

(2)當點f為bc的中點時,試比較△pfc和梯形apcq

面積的大小關(guān)系,并對你的結(jié)論加以證明.

八、其他 1、真題再現(xiàn)

如圖5,在梯形abcd中,ab∥dc, db平分∠adc,過點a作ae∥bd,交cd的

延長線于點e,且∠c=2∠e. ab(1)求證:梯形abcd是等腰梯形.

(2)若∠bdc=30°,ad=5,求cd的長. d dc2、類題演練 圖 5

1.(肇慶201*)如圖,四邊形abcd是平行四邊形,ac、bd交于點o,∠1=∠2.

(1)求證:四邊形abcd是矩形;

(2)若∠boc=120°,ab=4cm,求四邊形abcddc

2..如圖(2),ab是⊙o的直徑,d是圓上一點,ad=dc,連結(jié)ac,過點d作弦ac的平行線mn.

(1)求證:mn是⊙o的切線; (2)已知ab?10,ad?6,求弦bc的長.圖(2)

3.如圖,四邊形abcd是平行四邊形,以ab為直徑的⊙o經(jīng)過點d,e是⊙o上

.一點,且?aed?45°

(1)試判斷cd與⊙o的位置關(guān)系,并說明理由;

(2)若⊙o的半徑為3cm,ae?5cm,求?ade的正弦值.

(第3題)

第二篇:中考數(shù)學(xué)幾何證明題

中考數(shù)學(xué)幾何證明題

在▱abcd中,∠bad的平分線交直線bc于點e,交直線dc于點f.

(1)在圖1中證明ce=cf;

(2)若∠abc=90°,g是ef的中點(如圖2),直接寫出∠bdg的度數(shù);

第一個問我會,求第二個問。。需要過程,快呀!!

連接gc、bg

∵四邊形abcd為平行四邊形,∠abc=90°

∴四邊形abcd為矩形

∵af平分∠bad

∴∠daf=∠baf=45°

∵∠dcb=90°,df∥ab

∴∠dfa=45°,∠ecf=90°

∴△ecf為等腰rt△

∵g為ef中點

∴eg=cg=fg

∵△abe為等腰rt△,ab=dc

∴be=dc

∵∠cef=∠gcf=45°→∠beg=∠dcg=135°

∴△beg≌△dcg

∴bg=dg

∵cg⊥ef→∠dgc+∠dgb=90°

又∵∠dgc=∠bge

∴∠bge+∠dgb=90°

∴△dgb為等腰rt△

∴∠bdg=45°

分析已知、求證與圖形,探索證明的思路。

對于證明題,有三種思考方式:

(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。

(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識點很少,關(guān)鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學(xué)們一定要試一試。

(3)正逆結(jié)合。對于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結(jié)合,戰(zhàn)無不勝。

第三篇:中考數(shù)學(xué)幾何證明壓軸題 (1)

ab1、如圖,在梯形abcd中,ab∥cd,∠bcd=90°,

且ab=1,bc=2,tan∠adc=2.

(1) 求證:dc=bc;

(2) e是梯形內(nèi)一點,f是梯形外一點,且∠edc=

∠fbc,de=bf,試判斷△ecf的形狀,并證

明你的結(jié)論;

(3) 在(2)的條件下,當be:ce=1:2,∠dcbec=135°時,求sin∠bfe的值.

2、已知:如圖,在□abcd 中,e、f分別為邊ab、cd的中點,bd是對角線,ag∥db交cb的延長線于g.

(1)求證:△ade≌△cbf;

(2)若四邊形 bedf是菱形,則四邊形agbd

是什么特殊四邊形?并證明你的結(jié)論.

f

3、如圖13-1,一等腰直角三角尺gef的兩條直角邊與正方形abcd的兩條邊分別重合在一起.現(xiàn)正方形abcd保持不動,將三角尺gef繞斜邊ef的中點o(點o也是bd中點)按順時針方向旋轉(zhuǎn).

(1)如圖13-2,當ef與ab相交于點m,gf與bd相交于點n時,通過觀察或測

量bm,fn的長度,猜想bm,fn滿足的數(shù)量關(guān)系,并證明你的猜想;

(2)若三角尺gef旋轉(zhuǎn)到如圖13-3所示的位置時,線段fe的延長線與ab的延長

線相交于點m,線段bd的延長線與gf的延長線相交于點n,此時,(1)中的猜

想還成立嗎?若成立,請證明;若不成立,請說明理由.

a( b( e )圖13-1 圖13-2

圖13-3

1.[解析] (1)過a作dc的垂線am交dc于m,

則am=bc=2.

又tan∠adc=2,所以dm?

(2)等腰三角形.

證明:因為de?df,?edc??fbc,dc?bc.

所以,△dec≌△bfc 2?1.即dc=bc. 2

所以,ce?cf,?ecd??bcf.

所以,?ecf??bcf??bce??ecd??bce??bcd?90? 即△ecf是等腰直角三角形.

(3)設(shè)be?k,則ce?cf?

2k,所以ef?.

因為?bec?135?,又?cef?45?,所以?bef?90?.

所以bf??3k 所以sin?bfe?k1?. 3k3

2.[解析] (1)∵四邊形abcd是平行四邊形,

∴∠1=∠c,ad=cb,ab=cd .

∵點e 、f分別是ab、cd的中點,

∴ae=11ab ,cf=cd . 22

∴ae=cf

∴△ade≌△cbf .

(2)當四邊形bedf是菱形時,

四邊形 agbd是矩形.

∵四邊形abcd是平行四邊形,

∴ad∥bc .

∵ag∥bd ,

∴四邊形 agbd 是平行四邊形.

∵四邊形 bedf 是菱形,

∴de=be .

∵ae=be ,

∴ae=be=de .

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,

∴2∠2+2∠3=180°.

∴∠2+∠3=90°.

即∠adb=90°.

∴四邊形agbd是矩形 3[解析](1)bm=fn.

證明:∵△gef是等腰直角三角形,四邊形abcd是正方形,

∴ ∠abd =∠f =45°,ob = of.

又∵∠bom=∠fon,∴ △obm≌△ofn . ∴ bm=fn.

(2) bm=fn仍然成立.

(3) 證明:∵△gef是等腰直角三角形,四邊形abcd是正方形,

∴∠dba=∠gfe=45°,ob=of.

∴∠mbo=∠nfo=135°.

又∵∠mob=∠nof,∴ △obm≌△ofn .∴ bm=fn.

第四篇:中考數(shù)學(xué)經(jīng)典幾何證明題

201*年中考數(shù)學(xué)經(jīng)典幾何證明題(一)

1.(1)如圖1所示,在四邊形abcd中,ac=bd,ac與bd相交于點o,e、f分別是ad、bc的中點,

聯(lián)結(jié)ef,分別交ac、bd于點m、n,試判斷△omn的形狀,并加以證明;

(2)如圖2,在四邊形abcd中,若ab?cd,e、f分別是ad、bc的中點,聯(lián)結(jié)fe并延長,分別與ba、cd的延長線交于點m、n,請在圖2中畫圖并觀察,圖中是否有相等的角,若有,請直接寫出結(jié)論:;

(3)如圖3,在△abc中,ac?ab,點d在ac上,ab?cd,e、f分別是ad、bc的中點,聯(lián)結(jié)fe并延長,與ba的延長線交于點m,若?fec?45?,判斷點m與以ad為直徑的圓的位置關(guān)系,并簡要說明理由.b

a

me

db

(4) 觀察圖1、圖2、圖3的特性,請你根據(jù)這一特性構(gòu)造一個圖形,使它仍然具有ef、eg、ch這樣的線

段,并滿足(1)或(2)的結(jié)論,寫出相關(guān)題設(shè)的條件和結(jié)論.

3. 如圖,△abc是等邊三角形,f是ac的中點,d在線段bc上,連接df,以df為邊在df的右側(cè)作等邊△dfe,ed的延長線交ab于h,連接ec,則以下結(jié)論:①∠ahe+∠afd=180°;②af=在線段bc上(不與b,c重合)運動,其他條件不變時

bc;③當d2

bh

是定值;④當d在線段bc上(不與b,c重合)bd

bc?ec

運動,其他條件不變時是定值;

dc

(1)其中正確的是-------------------; (2)對于(1)中的結(jié)論加以說明;

f

c

f

圖 1圖2圖3

2.(1)如圖1,已知矩形abcd中,點e是bc上的一動點,過點e作ef⊥bd于點f,eg⊥ac于點g,ch⊥bd

于點h,試證明ch=ef+eg;

圖1

d

dc

(2) 若點e在bc的延長線上,如圖2,過點e作ef⊥bd于點f,eg⊥ac的延長線于點g,ch⊥bd于點h, 則ef、eg、ch三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;

(3) 如圖3,bd是正方形abcd的對角線,l在bd上,且bl=bc, 連結(jié)cl,點e是cl上任一點, ef⊥bd于

點f,eg⊥bc于點g,猜想ef、

eg、

bd之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;

f

h

bcd

e

4.在△abc中,ac=bc,?acb?90?,點d為ac的中點.

(1)如圖1,e為線段dc上任意一點,將線段de繞點d逆時針旋轉(zhuǎn)90°得到線段df,連結(jié)cf,過點f作fh?fc,交直線ab于點h.判斷fh與fc的數(shù)量關(guān)系并加以證明. (2)如圖2,若e為線段dc的延長線上任意一點,(1)中的其他條件不變,你在(1)中得出的結(jié)論是否發(fā)生改變,直接寫出你的結(jié)論,不必證明.

a

a

f

d f

d

e

c b

c

圖1

e

圖2

h

第1頁 共4頁

5. 如圖12,在△abc中,d為bc的中點,點e、f分別在邊ac、ab上,并且∠abe=∠acf,be、cf交于點o.過點o作op⊥ac,oq⊥ab,p、q為垂足.求證:dp=dq.

證明.

8. 設(shè)點e是平行四邊形abcd的邊ab的中點,f是bc邊上一點,線段de和af相交于點p,點q在線段de

上,且aq∥pc. (1)證明:pc=2aq.

(2)當點f為bc的中點時,試比較△pfc和梯形apcq面積的大小關(guān)系,并對你的結(jié)論加以證明.

6. 如圖。,bd是△abc的內(nèi)角平分線,ce是△abc的外角平分線,過點a作af⊥bd,ag⊥ce,垂足分別為f、g。

探究:線段fg的長與△abc三邊的關(guān)系,并加以證明。

說明:⑴如果你經(jīng)歷反復(fù)探索,沒有找到解決問題的方法,請你把探索過程中的某種思路寫出來(要求至少寫3步);⑵在你經(jīng)歷說明⑴的過程之后,可以從下列①、②中選取一個補充或更換已知條件,完成你的證明。 注意:選、偻瓿勺C明得10分;選、谕瓿勺C明得7分。 ①可畫出將△adf沿bd折疊后的圖形; ②將ce變?yōu)椤鱝bc的內(nèi)角平分線。(如圖2)

附加題:探究bd、ce滿足什么條件時,線段fg的長與△abc的周長存在一定的數(shù)量關(guān)系,并給出證明。

9. 兩塊等腰直角三角板△abc和△dec如圖擺放,其中∠acb =∠dce = 90°,f是de的中點,h是ae的中點,g是bd的中點.

(1)如圖1,若點d、e分別在ac、bc的延長線上,通過觀察和測量,猜想fh和fg的數(shù)量關(guān)系為_______和位置關(guān)系為______;

(2)如圖2,若將三角板△dec繞著點c順時針旋轉(zhuǎn)至ace在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;

(2)如圖3,將圖1中的△dec繞點c順時針旋轉(zhuǎn)一個銳角,得到圖3,(1)中的猜想還成立嗎?直接寫出結(jié)論,不用證明.

ch

g

a圖3 圖1 圖2

7. 在四邊形abcd中,對角線ac平分∠dab.

(1)如圖①,當∠dab=120°,∠b=∠d=90°時,求證:ab+ad=ac.

(2)如圖②,當∠dab=120°,∠b與∠d互補時,線段ab、ad、ac有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予證明.

(3)如圖③,當∠dab=90°,∠b與∠d互補時,線段ab、ad、ac有怎樣的數(shù)量關(guān)系?寫出你的猜想,并給予

10. 已知△abc中,ab=ac=3,∠bac=90°,點d為bc上一點,把一個足夠大的直角三角板的直角頂點放

在d處.

(1)如圖①,若bd=cd,將三角板繞點d逆時針旋轉(zhuǎn),兩條直角邊分別交ab、ac于點e、點f,求出重疊部分aedf的面積(直接寫出結(jié)果).

(2)如圖②,若bd=cd,將三角板繞點d逆時針旋轉(zhuǎn),使一條直角邊交ab于點e、另一條直角邊交ab的延長線于點f,設(shè)ae=x,重疊部分的面積為y,求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍. (3)若bd=2cd,將三角板繞點d逆時針旋轉(zhuǎn),使一條直角邊交ac于點f、另一條直角邊交射線ab于點e.設(shè)cf=x(x>1),重疊部分的面積為y,(本文來自公文素材庫m.seogis.com=1,(2)m=k=1。

201*年中考幾何經(jīng)典證明題(二)

1、如圖,△abc中,∠bac=90°,ad⊥bc,e為cb延長線上一點,且∠eab=∠bad,設(shè)dc=kbd,試探究ec與ea的數(shù)量關(guān)系。

5、如圖,△abc中,ad是bc邊上的中線,∠cad=∠b,ac=kab,e在ad延長線上,∠ced=∠adb,探究ae與ad的關(guān)系。

6、如圖,∠bac=90°,ad⊥bc,de⊥ab, ab=kac,探究be與ae是數(shù)量關(guān)系。

第五篇:廣西南寧歷年中考數(shù)學(xué)簡單幾何證明題

201*年

23.將圖8(1)中的矩形abcd沿對角線ac剪開,再把△abc沿著ad方向平移,得到圖8(2)中的△a?bc?,除△adc與△c?ba?全等外,你還可以指出哪幾對全等的三...角形(不能添加輔助線和字母)?請選擇其中一對加以證明.

b c

圖8(2)

?

201*年

21.如圖10,在△abc中,點d,e分別是ab,ac邊的中點,若把△ade繞著點e順時針旋轉(zhuǎn)180°得到△cfe.

(1)請指出圖中哪些線段與線段cf相等;

(2)試判斷四邊形dbcf是怎樣的四邊形?證明你的結(jié)論.

bf圖10

201*年

21.如圖8,在△abc中,d是bc的中點,de?ab,df?ac,垂足分別是e,f,be?cf.

(1)圖中有幾對全等的三角形?請一一列出; (2)選擇一對你認為全等的三角形進行證明.

(注意:在試題卷上作答無效) .........

e d 圖8 c

201*年

23.如圖11,pa、pb是半徑為1的⊙o的兩條切線,點a、b分別為切點,?apb?60°,op與弦ab交于點c,與⊙o交于點

d.

(1)在不添加任何輔助線的情況下,寫出圖中所有的全等三角形; (2)求陰影部分的面積(結(jié)果保留π).

圖11

201*年

21.某廠房屋頂呈人字架形(等腰三角形),如圖8所示,已知ac?bc?8m,?a?30°,cd?ab,于點d.

(1)求?acb的大小.

(2)求ab的長度.

c a d 圖8 b

23.如圖10,已知rt△abc≌rt△ade,?abc??ade?90°,bc與de相交于

eb.點f,連接cd,

(1)圖中還有幾對全等三角形,請你一一列舉.

(2)求證:cf?ef.

a df b c 圖10

201*年

23.如圖,點b、f、c、e在同一直線上,并且bf=ce,∠b=∠c. (1)請你只添加一個條件(不再加輔助線),使得△abc≌△def.

你添加的條件是:. f (2)添加了條件后,證明△abc≌△def.

201*年

22.如圖所示,∠bac=∠abd=90°,ac=bd,點o是ad,bc

的交點,點e是ab的中點.

(1)圖中有哪幾對全等三角形?請寫出來;

(2)試判斷oe和ab的位置關(guān)系,并給予證明.

201*年

23、如圖11,在菱形abcd中,ac是對角線,點e、f

分別是邊bc、ad的中點。 c e

(1)求證:abe≌cdf。

(2)若∠b=60°,ab=4,求線段ae的長。

圖11

訪問此文后還關(guān)注了以下范文:

201*年全國各地中考數(shù)學(xué)壓軸題專集一幾何證明題

廣西南寧歷年中考數(shù)學(xué)幾何綜合證明題(第25題)

【壓軸題 精講特訓(xùn)】挑戰(zhàn)201*數(shù)學(xué)中考壓軸題:幾何證明及通過幾何計算進行說理(含201*試題,含詳解)

中考幾何證明題集錦

中考平面幾何證明題

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


中考數(shù)學(xué)幾何證明題》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://m.seogis.com/gongwen/382472.html
相關(guān)文章