毛片在线视频观看,一级日韩免费大片,在线网站黄色,澳门在线高清一级毛片

薈聚奇文、博采眾長(zhǎng)、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 怎樣證明弦切角

怎樣證明弦切角

網(wǎng)站:公文素材庫 | 時(shí)間:2019-05-22 10:30:28 | 移動(dòng)端:怎樣證明弦切角

第一篇:怎樣證明弦切角

怎樣證明弦切角

設(shè)圓心為o,連接oc,ob,oa。過點(diǎn)a作tp的平行線交bc于d,

則∠tcb=∠cda

∵∠tcb=90-∠ocd

∵∠boc=180-2∠ocd

∴,∠boc=2∠tcb(弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半)

∵∠boc=2∠cab

∴∠tcb=∠cab(弦切角的度數(shù)等于它所夾的弧的圓周角)

2

接oboc過o做oe⊥bc

所以∠a=1/2

又因?yàn)椤蟧ct=90°

∠oec=90°

所以∠eoc=∠tcb

所以∠tcb=∠a

3

溫馨提示

設(shè)切點(diǎn)為a切線ab弦ac圓心為o過a作直徑ad連oc

角cab等于90度減角dac

因?yàn)閛a等于oc所以角aoc等于180度減去二倍的角dac

即可證明角aoc等于二倍的角cab

參考資料:弦切角是這弦所對(duì)的圓心角的一半

4

線段ad與線段ef互相垂直平分。

證明:設(shè)ad交ef于點(diǎn)g.

因?yàn)閍p為切線,所以弦切角等于所對(duì)的圓周角,即∠pac=∠b,

又因?yàn)閍d平分∠bac,所以∠dac=∠bad,

從而∠pac+∠dac=∠b+∠bad,

而∠pac+∠dac=∠pad,

∠b+∠bad=∠pda,所以

∠pad=∠pda,則△pad為等腰三角形,

因pm平分∠apd,所以pm垂直平分ad,則ef垂直平分ad,

從而ad垂直ef,

則∠age=∠agf=90°,

再由∠gaf=∠gae,得到

△eag≌△fag,

從而eg=fg,從而ad也垂直平分ef。

5

(1)圓心o在∠bac的一邊ac上

∵ac為直徑,ab切⊙o于a,

∴弧cma=弧ca

∵為半圓,

∴∠cab=90=弦ca所對(duì)的圓周角(2)圓心o在∠bac的內(nèi)部.

過a作直徑ad交⊙o于d,

若在優(yōu)弧m所對(duì)的劣弧上有一點(diǎn)e

那么,連接ec、ed、ea

則有:∠ced=∠cad、∠dea=∠dab

∴∠cea=∠cab

∴(弦切角定理)

(3)圓心o在∠bac的外部,

過a作直徑ad交⊙o于d

那么∠cda+∠cad=∠cab+∠cad=90

∴∠cda=∠cab

∴(弦切角定理)

編輯本段弦切角推論

推論內(nèi)容

若兩弦切角所夾的弧相等,則這兩個(gè)弦切角也相等

應(yīng)用舉例

例1:如圖,在rt△abc中,∠c=90,以ab為弦的⊙o與ac相切于點(diǎn)a,∠cba=60°,ab=a求bc長(zhǎng).

解:連結(jié)oa,ob.

∵在rt△abc中,∠c=90

∴∠bac=30°

∴bc=1/2a(rt△中30°角所對(duì)邊等于斜邊的一半)

例2:如圖,ad是δabc中∠bac的平分線,經(jīng)過點(diǎn)a的⊙o與bc切于點(diǎn)d,與ab,ac分別相交于e,f.

求證:ef∥bc.

證明:連df.

ad是∠bac的平分線∠bad=∠dac

∠efd=∠bad

∠efd=∠dac

⊙o切bc于d∠fdc=∠dac

∠efd=∠fdc

ef∥bc

第二篇:弦切角的逆定理的證明

弦切角逆定理證明

已知角cae=角abc,求證ae是圓o的切線

證明:連接ao并延長(zhǎng)交圓o于d,連接cd,

則角adc=角abc=角cae

而ad是直徑,因此角acd=90度,所以角dac=90度-角adc=90度-角cae

所以角dae=角dac+角cae=90度

故ae為切線

第三篇:弦切角定理證明

弦切角定理證明

弦切角定理

編輯本段弦切角定義

頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角。(弦切角就是切線與弦所夾的角)

如右圖所示,直線pt切圓o于點(diǎn)c,bc、ac為圓o的弦,∠tcb,∠tca,∠pca,∠pcb都為弦切角。

編輯本段弦切角定理

弦切角定理:弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半.弦切角定理證明:

證明一:設(shè)圓心為o,連接oc,ob,。

∵∠tcb=90-∠ocb

∵∠boc=180-2∠ocb

∴,∠boc=2∠tcb(定理:弦切角的度數(shù)等于它所夾的弧所對(duì)的圓心角的度數(shù)的一半)

∵∠boc=2∠cab(圓心角等于圓周角的兩倍)

∴∠tcb=∠cab(定理:弦切角的度數(shù)等于它所夾的弧的圓周角)

證明已知:ac是⊙o的弦,ab是⊙o的切線,a為切點(diǎn),弧是弦切角∠bac所夾的弧.

求證:(弦切角定理)

證明:分三種情況:

(1)圓心o在∠bac的一邊ac上

∵ac為直徑,ab切⊙o于a,

∴弧cma=弧ca

∵為半圓,

∴∠cab=90=弦ca所對(duì)的圓周角(2)圓心o在∠bac的內(nèi)部.

過a作直徑ad交⊙o于d,

若在優(yōu)弧m所對(duì)的劣弧上有一點(diǎn)e

那么,連接ec、ed、ea

則有:∠ced=∠cad、∠dea=∠dab

∴∠cea=∠cab

∴(弦切角定理)

(3)圓心o在∠bac的外部,

過a作直徑ad交⊙o于d

那么∠cda+∠cad=∠cab+∠cad=90

∴∠cda=∠cab

∴(弦切角定理)

編輯本段弦切角推論

推論內(nèi)容

若兩弦切角所夾的弧相等,則這兩個(gè)弦切角也相等

應(yīng)用舉例

例1:如圖,在rt△abc中,∠c=90,以ab為弦的⊙o與ac相切于點(diǎn)a,∠cba=60°,ab=a求bc長(zhǎng).

解:連結(jié)oa,ob.

∵在rt△abc中,∠c=90

∴∠bac=30°

∴bc=1/2a(rt△中30°角所對(duì)邊等于斜邊的一半)

例2:如圖,ad是δabc中∠bac的平分線,經(jīng)過點(diǎn)a的⊙o與bc切于點(diǎn)d,與ab,ac分別相交于e,f.

求證:ef∥bc.

證明:連df.

ad是∠bac的平分線∠bad=∠dac

∠efd=∠bad

∠efd=∠dac

⊙o切bc于d∠fdc=∠dac

∠efd=∠fdc

ef∥bc

例3:如圖,δabc內(nèi)接于⊙o,ab是⊙o直徑,cd⊥ab于d,mn切⊙o于c,

求證:ac平分∠mcd,bc平分∠ncd.

證明:∵ab是⊙o直徑

∴∠acb=90

∵cd⊥ab

∴∠acd=∠b,

∵mn切⊙o于c

∴∠mca=∠b,

∴∠mca=∠acd,

即ac平分∠mcd,

同理:bc平分∠ncd.

第四篇:弦切角定理的證明

弦切角定理的證明

弦切角定理:定義弦切角定理:弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半.(弦切角就是切線與弦所夾的角)弦切角定理證明

證明:設(shè)圓心為o,連接oc,ob,oa。過點(diǎn)a作tp的平行線交bc于d,

則∠tcb=∠cda

∵∠tcb=90-∠ocd

∵∠boc=180-2∠ocd

∴,∠boc=2∠tcb

證明:分三種情況:

(1)圓心o在∠bac的一邊ac上

∵ac為直徑,ab切⊙o于a,

∴弧cma=弧ca

∵為半圓,

(2)圓心o在∠bac的內(nèi)部.

過a作直徑ad交⊙o于d,

那么

.

(3)圓心o在∠bac的外部,

過a作直徑ad交⊙o于d

那么

2

連接并延長(zhǎng)to交圓o于點(diǎn)d,連接bd因?yàn)閠d為切線,所以td垂直tc,所以角btc+角dtb=90因?yàn)閠d為直徑,所以角bdt+角dtb=90所以角btc=角bdt=角a

3

編輯本段弦切角定義頂點(diǎn)在圓上,一邊和圓相交,另圖示一邊和圓相切的角叫做弦切角。(弦切角就是切線與弦所夾的角)如右圖所示,直線pt切圓o于點(diǎn)c,bc、ac為圓o的弦,∠tcb,∠tca,∠pca,∠pcb都為弦切角。編輯本段弦切角定理弦切角定理:弦切角的度數(shù)等于它所夾的弧的圓心角的度數(shù)的一半.弦切角定理證明:證明一:設(shè)圓心為o,連接oc,ob,!摺蟭cb=90-∠ocb∵∠boc=180-2∠ocb∴,∠boc=2∠tcb(定理:弦切角的度數(shù)等于它所夾的弧所對(duì)的圓心角的度數(shù)的一半)∵∠boc=2∠cab(圓心角等于圓周角的兩倍)∴∠tcb=∠cab(定理:弦切角的度數(shù)等于它所夾的弧的圓周角)證明已知:a(更多請(qǐng)搜索:m.seogis.com所對(duì)的劣弧上有一點(diǎn)e那么,連接ec、ed、ea則有:∠ced=∠cad、∠dea=∠dab∴∠cea=∠cab∴(弦切角定理)(3)圓心o在∠bac的外部,過a作直徑ad交⊙o于d那么∠cda+∠cad=∠cab+∠cad=90∴∠cda=∠cab∴(弦切角定理)編輯本段弦切角推論推論內(nèi)容若兩弦切角所夾的弧相等,則這兩個(gè)弦切角也相等應(yīng)用舉例例1:如圖,在rt△abc中,∠c=90,以ab為弦的⊙o與ac相切于點(diǎn)a,∠cba=60°,ab=a求bc長(zhǎng).解:連結(jié)oa,ob.∵在rt△abc中,∠c=90∴∠bac=30°∴bc=1/2a(rt△中30°角所對(duì)邊等于斜邊的一半)例2:如圖,ad是δabc中∠bac的平分線,經(jīng)過點(diǎn)a的⊙o與bc切于點(diǎn)d,與ab,ac分別相交于e,f.求證:ef∥bc.證明:連df.ad是∠bac的平分線∠bad=∠dac∠efd=∠bad∠efd=∠dac⊙o切bc于d∠fdc=∠dac∠efd=∠fdcef∥bc例3:如圖,δabc內(nèi)接于⊙o,ab是⊙o直徑,cd⊥ab于d,mn切⊙o于c,求證:ac平分∠mcd,bc平分∠ncd.證明:∵ab是⊙o直徑∴∠acb=90∵cd⊥ab∴∠acd=∠b,∵mn切⊙o于c∴∠mca=∠b,∴∠mca=∠acd,即ac平分∠mcd,同理:bc平分∠ncd.

第五篇:弦切角定理證明方法

弦切角定理證明方法

(1)連oc、oa,則有oc⊥cd于點(diǎn)c。得oc‖ad,知∠oca=∠cad。

而∠oca=∠oac,得∠cad=∠oac。進(jìn)而有∠oac=∠bac。

由此可知,0a與ab重合,即ab為⊙o的直徑。

(2)連接bc,且作ce⊥ab于點(diǎn)e。立即可得△abc為rt△,且∠acb=rt∠。

由射影定理有ac²=ae*ab。又∠cad=∠cae,ac公用,∠cda=∠cea,得△cea≌△cda,有ad=ae,所以,ac²=ab*ad。

第一題重新證明如下:

首先證明弦切角定理,即有∠acd=∠cba。

連接oa、oc、bc,則有

∠acd+∠aco=90°

=(1/2)(∠aco+∠cao+∠aoc)

=(1/2)(2∠aco+∠aoc)

=∠aco+(1/2)∠aoc,

所以∠acd=(1/2)∠aoc,

而∠cba=(1/2)∠aoc(同弧上的圓周角等于圓心角的一半),

得∠acd=∠cba。

另外,∠acd+∠cad=90°,∠cad=∠cab,

所以有∠cab+∠cba=90°,得∠bca=90°,進(jìn)而ab為⊙o的直徑。

2

證明一:設(shè)圓心為o,連接oc,ob,。

∵∠tcb=90-∠ocb

∵∠boc=180-2∠ocb

∴,∠boc=2∠tcb(定理:弦切角的度數(shù)等于它所夾的弧所對(duì)的圓心角的度數(shù)的一半)

∵∠boc=2∠cab(圓心角等于圓周角的兩倍)

∴∠tcb=∠cab(定理:弦切角的度數(shù)等于它所夾的弧的圓周角)

證明已知:ac是⊙o的弦,ab是⊙o的切線,a為切點(diǎn),弧是弦切角∠bac所夾的弧.

求證:(弦切角定理)

證明:分三種情況:

(1)圓心o在∠bac的一邊ac上

∵ac為直徑,ab切⊙o于a,

∴弧cma=弧ca

∵為半圓,

∴∠cab=90=弦ca所對(duì)的圓周角(2)圓心o在∠bac的內(nèi)部.

過a作直徑ad交⊙o于d,

若在優(yōu)弧m所對(duì)的劣弧上有一點(diǎn)e

那么,連接ec、ed、ea

則有:∠ced=∠cad、∠dea=∠dab

∴∠cea=∠cab

∴(弦切角定理)

(3)圓心o在∠bac的外部,

過a作直徑ad交⊙o于d

那么∠cda+∠cad=∠cab+∠cad=90

∴∠cda=∠cab

∴(弦切角定理)

編輯本段弦切角推論

推論內(nèi)容

若兩弦切角所夾的弧相等,則這兩個(gè)弦切角也相等

應(yīng)用舉例

例1:如圖,在rt△abc中,∠c=90,以ab為弦的⊙o與ac相切于點(diǎn)a,∠cba=60°,ab=a求bc長(zhǎng).

解:連結(jié)oa,ob.

∵在rt△abc中,∠c=90

∴∠bac=30°

∴bc=1/2a(rt△中30°角所對(duì)邊等于斜邊的一半)

例2:如圖,ad是δabc中∠bac的平分線,經(jīng)過點(diǎn)a的⊙o與bc切于點(diǎn)d,與ab,ac分別相交于e,f.

求證:ef∥bc.

證明:連df.

ad是∠bac的平分線∠bad=∠dac

∠efd=∠bad

∠efd=∠dac

⊙o切bc于d∠fdc=∠dac

∠efd=∠fdc

ef∥bc

例3:如圖,δabc內(nèi)接于⊙o,ab是⊙o直徑,cd⊥ab于d,mn切⊙o于c,

求證:ac平分∠mcd,bc平分∠ncd.

證明:∵ab是⊙o直徑

∴∠acb=90

∵cd⊥ab

∴∠acd=∠b,

∵mn切⊙o于c

∴∠mca=∠b,

∴∠mca=∠acd,

即ac平分∠mcd,

同理:bc平分∠ncd.

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。


怎樣證明弦切角》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.seogis.com/gongwen/380751.html
相關(guān)文章