毛片在线视频观看,一级日韩免费大片,在线网站黄色,澳门在线高清一级毛片

薈聚奇文、博采眾長(zhǎng)、見(jiàn)賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié)

初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié)

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-28 21:15:17 | 移動(dòng)端:初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié)

初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié)

一次函數(shù)

1、定義與定義式:

自變量x和因變量y有如下關(guān)系:y=kx+b(k,b為常數(shù),k≠0)則稱(chēng)y是x的一次函數(shù),特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。2、一次函數(shù)的性質(zhì):

y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k,即△y/△x=k3、一次函數(shù)的圖象及性質(zhì):

1)作法與圖形:(1)列表(一般找4-6個(gè)點(diǎn));(2)描點(diǎn);(3)連線(xiàn),可以

作出一次函數(shù)的圖象。(用平滑的直線(xiàn)連接)2)性質(zhì):在一次函數(shù)圖象上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。3)k,b與函數(shù)圖象所在象限。

當(dāng)k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。當(dāng)b>0時(shí),直線(xiàn)必通過(guò)一、二象限;當(dāng)b<0時(shí),直線(xiàn)必通過(guò)三、四象限。

當(dāng)b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖象。這時(shí),當(dāng)k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當(dāng)k<0時(shí),直線(xiàn)只通過(guò)二、四象限。4、在y=kx+b中,兩個(gè)坐標(biāo)系必定經(jīng)過(guò)(0,b)和(-b/k,0)兩點(diǎn)

k>0,b>0k>0,b

反比例函數(shù)的圖像為雙曲線(xiàn)。

2.反比例函數(shù)的概念需注意以下幾點(diǎn):(1)(k為常數(shù),k≠0);(2)自變量x的取值范圍是x≠0的一切實(shí)數(shù);(3)因變量y的取值范圍是y≠0的一切實(shí)數(shù).

3.因?yàn)樵趛=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交.

4.在一個(gè)反比例函數(shù)圖象上任取兩點(diǎn)P,Q,過(guò)點(diǎn)P,Q分別作x軸,y軸的平行線(xiàn),與坐標(biāo)軸圍成的矩形面積為S1,S2則S1=S2=|K|

二次函數(shù)

1.一般地,自變量x和因變量y,y是x的函數(shù)之間存在如下關(guān)系:y=ax^2+bx+c(a≠0)a,b,c為常數(shù),

a≠0,則稱(chēng)y為x的二次函數(shù)。2.二次函數(shù)的三種表達(dá)式

一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]對(duì)于二次函數(shù)y=ax^2+bx+c其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/(4a))交點(diǎn)式:y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線(xiàn)]其中x1,2=(-b±√(b^2-4ac))/(2a)(即一元二次方程求根公式)注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b)/4a

x1,x2=(-b±√b-4ac)/2a二次函數(shù)的圖像

3.在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,二次函數(shù)可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。二次函數(shù)標(biāo)準(zhǔn)畫(huà)法步驟(在平面直角坐標(biāo)系上)(1)列表(2)描點(diǎn)(3)連線(xiàn)4.拋物線(xiàn)的性質(zhì)

1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=-b/2a。對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。

拋物線(xiàn)與y軸交于(0,c)6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。

當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x-b/2a}上是增函數(shù);拋物線(xiàn)的開(kāi)口向上;函數(shù)的值域是{x|x≥4ac-b^2/4a}相反不變

當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax^2+c(a≠0)二次函數(shù)與一元二次方程

特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2+bx+c,

當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),

即ax^2+bx+c=0此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

二次函數(shù)公式:頂點(diǎn)式、交點(diǎn)式、兩根式

一般地,自變量x和因變量y之間存在如下關(guān)系:

(1)一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0),則稱(chēng)y為x的二次函數(shù)。頂點(diǎn)坐標(biāo)(-b/2a,(4ac-b^2)/4a)

(2)頂點(diǎn)式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k為常數(shù),a≠0).

(3)交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)

(4)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線(xiàn)與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.說(shuō)明:

(1)任何一個(gè)二次函數(shù)通過(guò)配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線(xiàn)的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線(xiàn)y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線(xiàn)a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線(xiàn)y=ax2的頂點(diǎn)在原點(diǎn).

(2)當(dāng)拋物線(xiàn)y=ax2+bx+c與x軸有交點(diǎn)時(shí),即對(duì)應(yīng)二次方程ax2+bx+c=0有實(shí)數(shù)根x1和x2存在時(shí),根據(jù)二次三項(xiàng)式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函數(shù)y=ax2+bx+c可轉(zhuǎn)化為兩根式y(tǒng)=a(x-x1)(x-x2).

二次函數(shù)對(duì)稱(chēng)軸及解法

設(shè)二次函數(shù)的解析式是y=ax^2+bx+c對(duì)稱(chēng)軸為:直線(xiàn)x=-b/2a,頂點(diǎn)橫坐標(biāo)為:-b/2a頂點(diǎn)縱坐標(biāo)為:(4ac-b^2)/4a求解方法:

1如果題目只給個(gè)二次函數(shù)的解析式的話(huà),那就只有配方法了吧,y=ax2+bx+c=a[x+(b/2a)]2+(4ac-b2)/4a,則對(duì)稱(chēng)軸為x=-b/2a

2.如果題目有f(a-x)=f(b+x)的已知條件,那對(duì)稱(chēng)軸是x=(a+b)/23.如果題目給出了2個(gè)零點(diǎn)(a,0)、(b,0),則對(duì)稱(chēng)軸是x=(a+b)/2

4.如果題目給出了定義在R上的拋物線(xiàn)最大值或最小值(a,b),則對(duì)稱(chēng)軸為x=a

擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié)

一次函數(shù)

1、定義與定義式:

自變量x和因變量y有如下關(guān)系:y=kx+b(k,b為常數(shù),k≠0)則稱(chēng)y是x的一次函數(shù),特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。2、一次函數(shù)的性質(zhì):

y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k,即△y/△x=k3、一次函數(shù)的圖象及性質(zhì):

1)作法與圖形:(1)列表(一般找4-6個(gè)點(diǎn));(2)描點(diǎn);(3)連線(xiàn),可以

作出一次函數(shù)的圖象。(用平滑的直線(xiàn)連接)2)性質(zhì):在一次函數(shù)圖象上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。3)k,b與函數(shù)圖象所在象限。

當(dāng)k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的增大而增大;當(dāng)k<0時(shí),直線(xiàn)必通過(guò)二、四象限,y隨x的增大而減小。當(dāng)b>0時(shí),直線(xiàn)必通過(guò)一、二象限;當(dāng)b<0時(shí),直線(xiàn)必通過(guò)三、四象限。

當(dāng)b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖象。這時(shí),當(dāng)k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當(dāng)k<0時(shí),直線(xiàn)只通過(guò)二、四象限。4、在y=kx+b中,兩個(gè)坐標(biāo)系必定經(jīng)過(guò)(0,b)和(-b/k,0)兩點(diǎn)

k>0,b>0k>0,b

反比例函數(shù)的圖像為雙曲線(xiàn)。

2.反比例函數(shù)的概念需注意以下幾點(diǎn):(1)(k為常數(shù),k≠0);(2)自變量x的取值范圍是x≠0的一切實(shí)數(shù);(3)因變量y的取值范圍是y≠0的一切實(shí)數(shù).

3.因?yàn)樵趛=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數(shù)的圖象不可能與x軸相交,也不可能與y軸相交.

4.在一個(gè)反比例函數(shù)圖象上任取兩點(diǎn)P,Q,過(guò)點(diǎn)P,Q分別作x軸,y軸的平行線(xiàn),與坐標(biāo)軸圍成的矩形面積為S1,S2則S1=S2=|K|

二次函數(shù)

1.一般地,自變量x和因變量y,y是x的函數(shù)之間存在如下關(guān)系:y=ax^2+bx+c(a≠0)a,b,c為常數(shù),

a≠0,則稱(chēng)y為x的二次函數(shù)。2.二次函數(shù)的三種表達(dá)式

一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

頂點(diǎn)式:y=a(x-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]對(duì)于二次函數(shù)y=ax^2+bx+c其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/(4a))交點(diǎn)式:y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線(xiàn)]其中x1,2=(-b±√(b^2-4ac))/(2a)(即一元二次方程求根公式)注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:h=-b/2ak=(4ac-b)/4a

x1,x2=(-b±√b-4ac)/2a二次函數(shù)的圖像

3.在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

二次函數(shù)可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。二次函數(shù)標(biāo)準(zhǔn)畫(huà)法步驟(在平面直角坐標(biāo)系上)

(1)列表(2)描點(diǎn)(3)連線(xiàn)4.拋物線(xiàn)的性質(zhì)

1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=-b/2a。對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)

2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。拋物線(xiàn)與y軸交于(0,c)6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。

當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b^2/4a;在{x|x-b/2a}上是增函數(shù);拋物線(xiàn)的開(kāi)口向上;函數(shù)的值域是{x|x≥4ac-b^2/4a}相反不變

當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax^2+c(a≠0)二次函數(shù)與一元二次方程

特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2+bx+c,

當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),

即ax^2+bx+c=0此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

友情提示:本文中關(guān)于《初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié)》給出的范例僅供您參考拓展思維使用,初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié):該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。


初中數(shù)學(xué)函數(shù)專(zhuān)題總結(jié)》由互聯(lián)網(wǎng)用戶(hù)整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.seogis.com/gongwen/620931.html