毛片在线视频观看,一级日韩免费大片,在线网站黄色,澳门在线高清一级毛片

薈聚奇文、博采眾長(zhǎng)、見賢思齊
當(dāng)前位置:公文素材庫(kù) > 計(jì)劃總結(jié) > 工作總結(jié) > 初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[1]

初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[1]

網(wǎng)站:公文素材庫(kù) | 時(shí)間:2019-05-28 15:09:30 | 移動(dòng)端:初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[1]

初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[1]

初一數(shù)學(xué)(上)應(yīng)知應(yīng)會(huì)的知識(shí)點(diǎn)代數(shù)初步知識(shí)

1.代數(shù)式:用運(yùn)算符號(hào)“+-×÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個(gè)數(shù)或一個(gè)字母也是代數(shù)式.2.列代數(shù)式的幾個(gè)注意事項(xiàng):

(1)數(shù)與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“”乘,也不能省略乘號(hào);(3)數(shù)與字母相乘時(shí),一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;(4)帶分?jǐn)?shù)與字母相乘時(shí),要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a×應(yīng)寫成a;

(5)在代數(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;(6)a與b的差寫作a-b,要注意字母順序;若只說(shuō)兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時(shí),則應(yīng)分類,寫做a-b和b-a.

3.幾個(gè)重要的代數(shù)式:(m、n表示整數(shù))

(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個(gè)連續(xù)整數(shù)是:n-1、n、n+1;

(4)若b>0,則正數(shù)是:a2+b,負(fù)數(shù)是:-a2-b,非負(fù)數(shù)是:a2,非正數(shù)是:-a2.有理數(shù)1.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);(2)有理數(shù)的分類:①②

(3)注意:有理數(shù)中,1、0、-1是三個(gè)特殊的數(shù),它們有自己的特性;這三個(gè)數(shù)把數(shù)軸上的數(shù)分成四個(gè)區(qū)域,這四個(gè)區(qū)域的數(shù)也有自己的特性;

(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.3.相反數(shù):

(1)只有符號(hào)不同的兩個(gè)數(shù),我們說(shuō)其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).4.絕對(duì)值:

(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

(2)絕對(duì)值可表示為:或;絕對(duì)值的問(wèn)題經(jīng)常分類討論;(3);;

(4)|a|是重要的非負(fù)數(shù),即|a|≥0;注意:|a||b|=|ab|,.

5.有理數(shù)比大。海1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒(méi)有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).7.有理數(shù)加法法則:

(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).10有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;(2)任何數(shù)同零相乘都得零;

(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.

11有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),.13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時(shí):(-a)n=an或(a-b)n=(b-a)n.14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;(3)a2是重要的非負(fù)數(shù),即a2≥0;若a2+|b|=0a=0,b=0;(4)據(jù)規(guī)律底數(shù)的小數(shù)點(diǎn)移動(dòng)一位,平方數(shù)的小數(shù)點(diǎn)移動(dòng)二位.

15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說(shuō)這個(gè)近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.

18.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡(jiǎn)單,怎樣算準(zhǔn)確,是數(shù)學(xué)計(jì)算的最重要的原則.

19.特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.整式的加減

1.單項(xiàng)式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項(xiàng)式.2.單項(xiàng)式的系數(shù)與次數(shù):?jiǎn)雾?xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡(jiǎn)稱單項(xiàng)式的系數(shù);系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù).3.多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫多項(xiàng)式.

4.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個(gè)二次三項(xiàng)式.

5.整式:凡不含有除法運(yùn)算,或雖含有除法運(yùn)算但除式中不含字母的代數(shù)式叫整式.整式分類為:.

6.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng).7.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的指數(shù)不變.

8.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào).

9.整式的加減:整式的加減,實(shí)際上是在去括號(hào)的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并.10.多項(xiàng)式的升冪和降冪排列:把一個(gè)多項(xiàng)式的各項(xiàng)按某個(gè)字母的指數(shù)從小到大(或從大到。┡帕衅饋(lái),叫做按這個(gè)字母的升冪排列(或降冪排列).注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.一元一次方程

1.等式與等量:用“=”號(hào)連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質(zhì):

等式性質(zhì)1:等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個(gè)不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.

4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!5.移項(xiàng):改變符號(hào)后,把方程的項(xiàng)從一邊移到另一邊叫移項(xiàng).移項(xiàng)的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.

7.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡(jiǎn)形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟:整理方程去分母去括號(hào)移項(xiàng)合并同類項(xiàng)系數(shù)化為1(檢驗(yàn)方程的解).10.列一元一次方程解應(yīng)用題:

(1)讀題分析法:多用于“和,差,倍,分問(wèn)題”

仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:多用于“行程問(wèn)題”

利用圖形分析數(shù)學(xué)問(wèn)題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過(guò)圖形找相等關(guān)系是解決問(wèn)題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

11.列方程解應(yīng)用題的常用公式:

(1)行程問(wèn)題:距離=速度時(shí)間;(2)工程問(wèn)題:工作量=工效工時(shí);(3)比率問(wèn)題:部分=全體比率;

(4)順逆流問(wèn)題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價(jià)格問(wèn)題:售價(jià)=定價(jià)折,利潤(rùn)=售價(jià)-成本,;

(6)周長(zhǎng)、面積、體積問(wèn)題:C圓=2πR,S圓=πR2,C長(zhǎng)方形=2(a+b),S長(zhǎng)方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2-r2),V長(zhǎng)方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h.

擴(kuò)展閱讀:人教版__初一數(shù)學(xué)知識(shí)點(diǎn)下冊(cè)總結(jié)

博源教育曾老師1378780036611

初一數(shù)學(xué)(下)應(yīng)知應(yīng)會(huì)的知識(shí)點(diǎn)

二元一次方程組

1.二元一次方程:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說(shuō)二元一次方程有無(wú)數(shù)個(gè)解.

2.二元一次方程組:兩個(gè)二元一次方程聯(lián)立在一起是二元一次方程組.

3.二元一次方程組的解:使二元一次方程組的兩個(gè)方程,左右兩邊都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解.注意:一般說(shuō)二元一次方程組只有唯一解(即公共解).4.二元一次方程組的解法:(1)代入消元法;(2)加減消元法;(3)注意:判斷如何解簡(jiǎn)單是關(guān)鍵.※5.一次方程組的應(yīng)用:

(1)對(duì)于一個(gè)應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則“難列

易解”;

(2)對(duì)于方程組,若方程個(gè)數(shù)與未知數(shù)個(gè)數(shù)相等時(shí),一般可求出未知數(shù)的值;

(3)對(duì)于方程組,若方程個(gè)數(shù)比未知數(shù)個(gè)數(shù)少一個(gè)時(shí),一般求不出未知數(shù)的值,但總可以求出任何兩個(gè)未知

數(shù)的關(guān)系.

一元一次不等式(組)

1.不等式:用不等號(hào)“>”“<”“≤”“≥”“≠”,把兩個(gè)代數(shù)式連接起來(lái)的式子叫不等式.2.不等式的基本性質(zhì):

不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變;不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向要改變.

3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個(gè)不等式的解;不等式所有解的集合,叫做這個(gè)不

博源教育曾老師1378780036612

等式的解集.

4.一元一次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b>0或ax+b<0,(a≠0).

5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)

3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時(shí),要注意空圈和實(shí)點(diǎn).

6.一元一次不等式組:含有相同未知數(shù)的幾個(gè)一元一次不等式所組成的不等式組,叫做一元一次不等式組;

注意:ab>0

abab0a0b0或a0b0;

amamab<0

0a0b0或a0b0;ab=0a=0或b=0;a=m.

7.一元一次不等式組的解集與解法:所有這些一元一次不等式解集的公共部分,叫做這個(gè)一元一次不等式組的解集;解一元一次不等式時(shí),應(yīng)分別求出這個(gè)不等式組中各個(gè)不等式的解集,再利用數(shù)軸確定這個(gè)不等式組的解集.

8.一元一次不等式組的解集的四種類型:設(shè)a>b

xaxb不等式組的解集xaxb是xa不等式的組解集是xbba>ba>xaxb不等式組的解集是axbxaxb不等式組解集是空集ba>xy0x、y是正數(shù)xy0ba>,

9.幾個(gè)重要的判斷:,

xy0x、y是負(fù)數(shù)xy0xy0x、y異號(hào)且正數(shù)絕對(duì)值大,xy0-2-

xy0x、y異號(hào)且負(fù)數(shù)絕對(duì)值大xy0.博源教育曾老師1378780036613

整式的乘除

1.同底數(shù)冪的乘法:aman=am+n,底數(shù)不變,指數(shù)相加.

2.冪的乘方與積的乘方:(am)n=amn,底數(shù)不變,指數(shù)相乘;(ab)n=anbn,積的乘方等于各因式乘方的積.3.單項(xiàng)式的乘法:系數(shù)相乘,相同字母相乘,只在一個(gè)因式中含有的字母,連同指數(shù)寫在積里.4.單項(xiàng)式與多項(xiàng)式的乘法:m(a+b+c)=ma+mb+mc,用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加.5.多項(xiàng)式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多項(xiàng)式的每一項(xiàng)去乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加.6.乘法公式:

(1)平方差公式:(a+b)(a-b)=a2-b2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;(2)完全平方公式:

①(a+b)=a+2ab+b,兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:

p(1)若二次三項(xiàng)式x+px+q是完全平方式,則有關(guān)系式:22

222

2q;

(2)二次三項(xiàng)式ax2+bx+c經(jīng)過(guò)配方,總可以變?yōu)閍(x-h)2+k的形式,利用a(x-h)2+k①可以判斷ax+bx+c值的符號(hào);②當(dāng)x=h時(shí),可求出ax+bx+c的最大(或最。┲祂.(3)注意:x22

2

1x21xx22.

8.同底數(shù)冪的除法:am÷an=am-n,底數(shù)不變,指數(shù)相減.9.零指數(shù)與負(fù)指數(shù)公式:(1)a0=1(a≠0);a-n=

1an,(a≠0).注意:00,0-2無(wú)意義;

博源教育曾老師1378780036614

(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5.

10.單項(xiàng)式除以單項(xiàng)式:系數(shù)相除,相同字母相除,只在被除式中含有的字母,連同它的指數(shù)作為商的一個(gè)因式.

11.多項(xiàng)式除以單項(xiàng)式:先用多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.

※12.多項(xiàng)式除以多項(xiàng)式:先因式分解后約分或豎式相除;注意:被除式-余式=除式商式.13.整式混合運(yùn)算:先乘方,后乘除,最后加減,有括號(hào)先算括號(hào)內(nèi).線段、角、相交線與平行線

幾何A級(jí)概念:(要求深刻理解、熟練運(yùn)用、主要用于幾何證明)

1.角平分線的定義:一條射線把一個(gè)角分成兩個(gè)相等的部分,這條射線叫角的平分線.(如圖)OA幾何表達(dá)式舉例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分線2.線段中點(diǎn)的定義:幾何表達(dá)式舉例:(1)∵C是AB中點(diǎn)∴AC=BCCB點(diǎn)C把線段AB分成兩條相等的線段,點(diǎn)C叫線段中點(diǎn).(如圖)A(2)∵AC=BC∴C是AB中點(diǎn)3.等量公理:(如圖)(1)等量加等量和相等;(2)等量減等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.幾何表達(dá)式舉例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC

博源教育曾老師137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代換:幾何表達(dá)式舉例:∵a=cb=c∴a=b5.補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.(如圖)13幾何表達(dá)式舉例:∵a=cb=d又∵c=d∴a=b幾何表達(dá)式舉例:∵a=c+db=c+d∴a=b幾何表達(dá)式舉例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性質(zhì):同角或等角的余角相等.(如圖)幾何表達(dá)式舉例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老師1378780036616∴∠1=∠27.對(duì)頂角性質(zhì)定理:對(duì)頂角相等.(如圖)CAOBD幾何表達(dá)式舉例:∵∠AOC=∠DOB∴8.兩條直線垂直的定義:兩條直線相交成四個(gè)角,有一個(gè)角是直角,這兩條直線互相垂直.(如圖)AC幾何表達(dá)式舉例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直線平行定理:兩條直線都和第三條直線平行,那么,這兩條直線也平行.(如圖)ACEBDF幾何表達(dá)式舉例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行線判定定理:兩條直線被第三條直線所截:(1)若同位角相等,兩條直線平行;(如圖)(2)若內(nèi)錯(cuò)角相等,兩條直線平行;(如圖)

-6-

幾何表達(dá)式舉例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老師1378780036617(3)若同旁內(nèi)角互補(bǔ),兩條直線平行.(如圖)11.平行線性質(zhì)定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD幾何表達(dá)式舉例:(1)∵AB∥CD(1)兩條平行線被第三條直線所截,同位角相等;(如圖)(2)兩條平行線被第三條直線所截,內(nèi)錯(cuò)角相等;(如圖)(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).(如圖)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°幾何B級(jí)概念:(要求理解、會(huì)講、會(huì)用,主要用于填空和選擇題)

一基本概念:

直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補(bǔ)角、互為余角、鄰補(bǔ)角、兩點(diǎn)間的距離、相交線、平行線、垂線段、垂足、對(duì)頂角、延長(zhǎng)線與反向延長(zhǎng)線、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角、點(diǎn)到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明.二定理:

1.直線公理:過(guò)兩點(diǎn)有且只有一條直線.2.線段公理:兩點(diǎn)之間線段最短.

3.有關(guān)垂線的定理:

(1)過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;

(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.4.平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行.

博源教育曾老師1378780036618

三公式:

直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常識(shí):

1.定義有雙向性,定理沒(méi)有.

2.直線不能延長(zhǎng);射線不能正向延長(zhǎng),但能反向延長(zhǎng);線段能雙向延長(zhǎng).

3.命題可以寫為“如果那么”的形式,“如果”是命題的條件,“那么”是命題的結(jié)論.

4.幾何畫圖要畫一般圖形,以免給題目附加沒(méi)有的條件,造成誤解.5.?dāng)?shù)射線、線段、角的個(gè)數(shù)時(shí),應(yīng)該按順序數(shù),或分類數(shù).

6.幾何論證題可以運(yùn)用“分析綜合法”、“方程分析法”、“代入分析法”、“圖形觀察法”四種方法分析.7.方向角:

西北北東北北偏西30°30°(1)(2)

西東

西南60°

南東南南偏東60°8.比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.9.幾何題的證明要用“論證法”,論證要求規(guī)范、嚴(yán)密、有依據(jù);證明的依據(jù)是學(xué)過(guò)的定義、公理、定理和推論.

友情提示:本文中關(guān)于《初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[1]》給出的范例僅供您參考拓展思維使用,初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[1]:該篇文章建議您自主創(chuàng)作。

來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。


初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)[1]》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://m.seogis.com/gongwen/588786.html