數(shù)學(xué)九年級(jí)上期知識(shí)點(diǎn)總結(jié)(全)
第二十一章:二次根式
一、
二次根式
1、二次根式:形如aa0的式子;2、aa0是一個(gè)非負(fù)數(shù);3、必須記牢:a2aa0;a2aa0.
4、代數(shù)式:我們學(xué)過(guò)的式子,都是用基本運(yùn)算符號(hào)(加減乘除、乘方和開(kāi)方)把數(shù)和表示
數(shù)的字母連接起來(lái)的式子。二、二次根式的乘除
1、二次根式的乘法規(guī)定:ababa0,b0.2、二次根式的除法規(guī)定:
aaa0,b>0.bb3、最簡(jiǎn)二次根式的特點(diǎn):
1)被開(kāi)方數(shù)不含分母;
2)被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式.三、二次根式的加減1、二次根式加減時(shí),可以先將二次根式化成最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式
進(jìn)行合并。2、閱讀與思考的重點(diǎn)
第二十二章:一元二次方程
一、一元二次方程1、定義:等號(hào)兩邊都是等式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高指數(shù)是2(二
次)的方程。2、根:一元二次方程的解就是一元二次方程的根。3、一般形式:axbxc0a0
2二、解一元二次方程及其方法1、配方法:
1)如果方程可化為x2p或mxnpp0的形式,那么可得xp或
2(注:目的在于“降次”解方程容易)mxnp。
2)步驟:移項(xiàng)→左右兩邊加上需要項(xiàng)→組成平方→降次→解得根→再解一元一次方程
→得到最后的結(jié)果(一般是兩個(gè)根)
3)方程的額二次項(xiàng)系數(shù)不是1時(shí),為便于配方,可以讓方程的各項(xiàng)除以二次項(xiàng)系數(shù)。2、公式法:
1)一般形式:axbxc0a0
21/4
2)根的判別式:b4ac;用“”表示,即b4ac。
22bb24ac3)求根公式:x;
2a4)公式法:運(yùn)用求根公式,把各系數(shù)直接帶入,可以避免繁雜的配方,直接得出根。3、因式分解法:
不用開(kāi)方降次,而是先因式分解使方程化為兩個(gè)一次式的乘積等于0的形式,再使這兩個(gè)一次式分別等于0,從而實(shí)現(xiàn)降次。4、解一元二次的基本思路:將二次方程化為一次方程,即降次。三、一元二次方程的根與系數(shù)的關(guān)系
1、由因式分解法可知方程:xx1xx20,展開(kāi)后:x2x1x2xx1x20;
一次項(xiàng)系數(shù):px1x2,常數(shù)項(xiàng):qx1x2
兩根的和、積與系數(shù)的關(guān)系可以為:x1x2p,x1x2q。
bb24ac2、一般形式:axbxc0a0,它的根是x;
2a2方程的兩個(gè)根x1、x2和系數(shù)a,b,c的關(guān)系為:x1x2四、
實(shí)際問(wèn)題與一元二次方程
bc,x1x2。aa第二十三章:旋轉(zhuǎn)
一、圖形的旋轉(zhuǎn)
旋轉(zhuǎn)、旋轉(zhuǎn)中心、旋轉(zhuǎn)角二、中心對(duì)稱
關(guān)于這個(gè)點(diǎn)對(duì)稱(中心對(duì)稱)、對(duì)稱中心、對(duì)稱點(diǎn)、中心對(duì)稱圖形、關(guān)于原點(diǎn)對(duì)稱的點(diǎn)坐標(biāo)
第二十四章:圓
一、圓1、圓:一條線段繞著它的一個(gè)固定端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)移動(dòng)的軌跡所形成的圖形;2、圓心:固定的端點(diǎn);3、半徑:這條線段;4、弦:連接圓上任意兩點(diǎn)的線段;5、直徑:經(jīng)過(guò)圓心的弦(最長(zhǎng)的弦);6、圓。簣A上任意兩點(diǎn)間的部分,簡(jiǎn)稱“弧”;7、半圓:圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都是半圓;8、等圓:能夠重合的兩個(gè)圓;9、等。耗軌蚧ハ嘀睾系幕;二、垂直于弦的直徑1、圓是軸對(duì)稱圖形,任何一條直徑所在直線都是它的對(duì)稱軸。
2/4
2、垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧。3、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。三、弧、弦、圓心角、圓周角1、圓心角:頂點(diǎn)在圓心的角;2、定理:在同圓與等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;3、推理:
在同圓與等圓中,如果兩條弧相等,那么它們所對(duì)的圓心角相等,所對(duì)的弦相等;在同圓或等圓中,如果兩條弦相等,那么它們所對(duì)的圓心角相等,所對(duì)的弧相等。4、圓周角:頂點(diǎn)在圓上,且兩邊與圓相交的角;5、定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的
一半;6、推論:
半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑;7、圓內(nèi)接多邊形、多邊形的外接圓
圓的內(nèi)接四邊形的對(duì)角互補(bǔ)8、如果三角形一條邊上的中線等于這條邊的一般,那么這個(gè)三角形是直角三角形四、點(diǎn)、直線、圓與圓的位置關(guān)系1、點(diǎn)和圓的位置關(guān)系:
點(diǎn)P在圓外dr;點(diǎn)P在圓上dr;點(diǎn)P在圓內(nèi)dr.2、不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓3、外接圓:經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)可以作一個(gè)圓;圓心是三角形三條邊垂直平分線的交點(diǎn),
叫做三角形的外心。4、反證法的介紹5、直線和圓的位置關(guān)系:
直線l和⊙O相交dr;直線l和⊙O相切dr;直線l和⊙O相離dr.6、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線;7、切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑;8、切線長(zhǎng)定理:從圓外一點(diǎn)可以引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連
線平分兩條切線的夾角。9、內(nèi)切圓:與三角形各邊都相切的圓叫做三角形的內(nèi)切圓;圓心是三角形三條角平分線的
交點(diǎn),叫做三角形的內(nèi)心。
10、相離、外離、內(nèi)含、相切、外切、內(nèi)切、相交、圓心距五、正多邊形和圓:1、一個(gè)正多邊形外接圓的圓心叫做這個(gè)正多邊形的中心;2、外接圓的半徑叫做正多邊形的半徑;3、正多邊形每一邊所對(duì)的圓心角叫做正多邊形的中心角;4、中心到正多邊形的一邊的距離叫做正多邊形的邊心距。六、弧長(zhǎng)和扇形面積:
3/4
1、弧長(zhǎng):lnR.1802、扇形:由組成圓心角的兩條半徑和圓心角所對(duì)的弧所圍成的圖形;
S扇形nR1.S扇形lR.36023、母線:圓錐頂點(diǎn)和底面圓周上任意一點(diǎn)的線段;
第二十五章:概率初步
一、隨機(jī)事件與概率
1、隨機(jī)事件:在一定的條件下,可能發(fā)生也可能不發(fā)生的事件。2、概率:一般地,對(duì)于一個(gè)隨機(jī)事件A,我們把刻畫(huà)其發(fā)生可能性大小的數(shù)值,成為隨機(jī)
事件A發(fā)生的概率。記作:P(A)。3、如果一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包括其
中的m種結(jié)果,那么事件A發(fā)生的概率為:PA4、特別:
當(dāng)A為必然事件時(shí),P(A)=1;當(dāng)A為不可能事件時(shí),P(A)=0.二、用列舉法求概率:列表法、樹(shù)形圖、
m,其中0PA1。n4/4
擴(kuò)展閱讀:人教版九年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
人教版九年級(jí)數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)總結(jié)
第二十一章二次根式21.1二次根式
知識(shí)點(diǎn)一二次根式的概念(1)一般地,我們把形如
根。其中“
a(a≥0)的式子叫做二次根式。二次根式a的實(shí)質(zhì)是一個(gè)非負(fù)數(shù)a的算術(shù)平方
”叫做二次根號(hào)。
(2)正確理解二次根式的概念,要把握以下幾點(diǎn):①二次根式是在形式上定義的,必須含有二次根號(hào)“
是二次根式。
②被開(kāi)方數(shù)a必須是非負(fù)數(shù),即a≥0.如
”的根指數(shù)為2,即“2”。如
4是二次根式,雖然4=2,但2不
3就不是二次根式,但式子(3)2是二次根式。
”,注意,不可誤認(rèn)為根指數(shù)是
③“”,一般省略根指數(shù)2,寫(xiě)作“
“1”或“0”。
提示:判斷是不是二次根式,一看形式,二看數(shù)值,即形式上要有二次根號(hào),被開(kāi)方數(shù)要是非負(fù)數(shù)。知識(shí)點(diǎn)二二次根式的性質(zhì)
(1)
a(a≥0)既是二次根式,又是非負(fù)數(shù)的算術(shù)平方根,所以它一定是非負(fù)數(shù),即a≥(a≥
0),我們把這個(gè)性質(zhì)叫做二次根式的非負(fù)性。(2)(
a)2=a(a≥0),這個(gè)性質(zhì)可以正用,也可以逆用,正用時(shí)常用于二次根式的化簡(jiǎn)和計(jì)算,可
以去掉根號(hào);逆用時(shí)可以把一個(gè)非負(fù)數(shù)寫(xiě)成完整平方數(shù)的形式,常用于多項(xiàng)式的因式分解。(3)
a2=a(a≥0),這個(gè)性質(zhì)可以正用,也可以逆用,正用時(shí)用于二次根式的化簡(jiǎn),即當(dāng)被開(kāi)方數(shù)能
化為完全平方數(shù)(式)時(shí),就可以利用該性質(zhì)去掉根號(hào);逆用時(shí)可以把一個(gè)非負(fù)數(shù)化為一個(gè)二次根式。知識(shí)點(diǎn)三代數(shù)式
定義:用基本運(yùn)算符號(hào)(基本運(yùn)算包括加、減、乘、除、乘方和開(kāi)方)把數(shù)和表示數(shù)的字母連接起來(lái)的式子,叫做代數(shù)式。
21.2二次根式的乘除
知識(shí)點(diǎn)一二次根式的乘法法則一般地,對(duì)二次根式的乘法規(guī)定:根指數(shù)不變。
知識(shí)點(diǎn)二積的算術(shù)平方根的性質(zhì)
ab=ab(a≥0,b≥0),即二次根式相乘,把被開(kāi)方數(shù)相乘,
ab=ab(a≥0,b≥0),積的算術(shù)平方根等于積中各個(gè)因式的算術(shù)平方根的積。
知識(shí)點(diǎn)三二次根式的除法法則一般地,對(duì)二次根式的除法規(guī)定:根指數(shù)不變。
知識(shí)點(diǎn)四商的算術(shù)平方根的性質(zhì)
ab=
ab(a≥0,b>0),即兩個(gè)二次根式相除,把被開(kāi)方數(shù)相除,
ab=
ab(a≥0,b>0),即商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根。
知識(shí)點(diǎn)五最簡(jiǎn)二次根式必須滿足以下兩個(gè)條件:
(1)(2)
被開(kāi)方數(shù)不含分母;
被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。
21.3二次根式的加減
知識(shí)點(diǎn)一二次根式的加減
二次根式加減時(shí),可以先將二次根式化成最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的二次根式合并,二次根式加減法的實(shí)質(zhì)是將被開(kāi)方數(shù)相同的二次根式合并,合并時(shí)只把系數(shù)相加減,根指數(shù)和被開(kāi)方數(shù)不變。知識(shí)點(diǎn)二二次根式的混合運(yùn)算(1)
二次根式的混合運(yùn)算順序與整式的混合運(yùn)算順序相同:先乘方開(kāi)方,再乘除,最后加減,有括號(hào)的先算括號(hào)里面的。
(2)
在二次根式的運(yùn)算中乘法法則和乘法公式仍然適用。
22.1一元二次方程
知識(shí)點(diǎn)一一元二次方程的定義
等號(hào)兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。注意一下幾點(diǎn):
①只含有一個(gè)未知數(shù);②未知數(shù)的最高次數(shù)是2;③是整式方程。知識(shí)點(diǎn)二一元二次方程的一般形式一般形式:ax
2+bx+c=0(a≠0).其中,ax2是二次項(xiàng),a
是二次項(xiàng)系數(shù);bx是一次項(xiàng),b
是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。知識(shí)點(diǎn)三一元二次方程的根
使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定義是解方程過(guò)程中驗(yàn)根的依據(jù)。
22.2降次解一元二次方程22.2.1配方法
知識(shí)點(diǎn)一直接開(kāi)平方法解一元二次方程(1)
如果方程的一邊可以化成含未知數(shù)的代數(shù)式的平方,另一邊是非負(fù)數(shù),可以直接開(kāi)平方。一般地,對(duì)于形如x=a(a≥0)的方程,根據(jù)平方根的定義可解得x1=
(2)
2a,x2=a.
直接開(kāi)平方法適用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接開(kāi)平方法。(3)用直接開(kāi)平方法求一元二次方程的根,要正確運(yùn)用平方根的性質(zhì),即正數(shù)的平方根有兩個(gè),它們互為相反數(shù);零的平方根是零;負(fù)數(shù)沒(méi)有平方根。
(4)直接開(kāi)平方法解一元二次方程的步驟是:①移項(xiàng);②使二次項(xiàng)系數(shù)或含有未知數(shù)的式子的平方項(xiàng)的系數(shù)為1;③兩邊直接開(kāi)平方,使原方程變?yōu)閮蓚(gè)一元二次方程;④解一元一次方程,求出原方程的根。
知識(shí)點(diǎn)二配方法解一元二次方程
通過(guò)配成完全平方形式來(lái)解一元二次方程的方法,叫做配方法,配方的目的是降次,把一個(gè)一元二次方程轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解。
配方法的一般步驟可以總結(jié)為:一移、二除、三配、四開(kāi)。(1)(2)(3)(4)
把常數(shù)項(xiàng)移到等號(hào)的右邊;方程兩邊都除以二次項(xiàng)系數(shù);
方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把左邊配成完全平方式;若等號(hào)右邊為非負(fù)數(shù),直接開(kāi)平方求出方程的解。
22.2.2公式法
知識(shí)點(diǎn)一公式法解一元二次方程(1)
一般地,對(duì)于一元二次方程
ax2+bx+c=0(a≠0),如果
b2-4ac≥0,那么方程的兩個(gè)根為
bx=
b2a24ac,這個(gè)公式叫做一元二次方程的求根公式,利用求根公式,我們可以由
一元二方程的系數(shù)a,b,c的值直接求得方程的解,這種解方程的方法叫做公式法。
(2)
一元二次方程求根公式的推導(dǎo)過(guò)程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的過(guò)程。
(3)
公式法解一元二次方程的具體步驟:
①方程化為一般形式:ax2+bx+c=0(a≠0),一般a化為正值②確定公式中a,b,c的值,注意符號(hào);③求出b2-4ac的值;
④若b2-4ac≥0,則把a(bǔ),b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,則方程無(wú)實(shí)數(shù)根。知識(shí)點(diǎn)二一元二次方程根的判別式
式子b-4ac叫做方程ax+bx+c=0(a≠0)根的判別式,通常用希臘字母△表示它,即△=b-4ac.
△>0,方程ax+bx+c=0(a≠0)有兩個(gè)不相等的實(shí)數(shù)根一元二次方程△=0,方程ax2+bx+c=0(a≠0)有兩個(gè)相等的實(shí)數(shù)根根的判別式△<0,方程ax2+bx+c=0(a≠0)無(wú)實(shí)數(shù)根2
22222.2.3因式分解法
知識(shí)點(diǎn)一因式分解法解一元二次方程(1)
把一元二次方程的一邊化為0,而另一邊分解成兩個(gè)一次因式的積,進(jìn)而轉(zhuǎn)化為求兩個(gè)求一元一次方程的解,這種解方程的方法叫做因式分解法。
(2)
因式分解法的詳細(xì)步驟:
①移項(xiàng),將所有的項(xiàng)都移到左邊,右邊化為0;
②把方程的左邊分解成兩個(gè)因式的積,可用的方法有提公因式、平方差公式和完全平方公式;③令每一個(gè)因式分別為零,得到一元一次方程;④解一元一次方程即可得到原方程的解。知識(shí)點(diǎn)二用合適的方法解一元一次方程
方法名稱理論依據(jù)適用范圍形如x2=p或(mx+n)2=p(p≥0)所有一元二次方程所有一元二次方程一邊為0,另一邊易于分解成兩個(gè)一次因式的積的一元二次方程。
直接開(kāi)平方法平方根的意義配方法公式法因式分解法完全平方公式配方法當(dāng)ab=0,則a=0或b=022.2.4一元二次方程的根與系數(shù)的關(guān)系
若一元二次方程x2+px+q=0的兩個(gè)根為x1,x2,則有x1+x2=-p,x1x2=q.若一元二次方程a2x+bx+c=0(a≠0)有兩個(gè)實(shí)數(shù)根x1,x2,則有x1+x2=,ba,x1x2=
ca22.3實(shí)際問(wèn)題與一元二次方程
知識(shí)點(diǎn)一列一元二次方程解應(yīng)用題的一般步驟:(1)(2)(3)(4)(5)(6)(1)
審:是指讀懂題目,弄清題意,明確哪些是已知量,哪些是未知量以及它們之間的等量關(guān)系。設(shè):是指設(shè)元,也就是設(shè)出未知數(shù)。
列:就是列方程,這是關(guān)鍵步驟,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等含義,然后列代數(shù)式表示這個(gè)相等關(guān)系中的各個(gè)量,就得到含有未知數(shù)的等式,即方程。解:就是解方程,求出未知數(shù)的值。
驗(yàn):是指檢驗(yàn)方程的解是否保證實(shí)際問(wèn)題有意義,符合題意。答:寫(xiě)出答案。數(shù)字問(wèn)題
知識(shí)點(diǎn)二列一元二次方程解應(yīng)用題的幾種常見(jiàn)類(lèi)型
三個(gè)連續(xù)整數(shù):若設(shè)中間的一個(gè)數(shù)為x,則另兩個(gè)數(shù)分別為x-1,x+1。三個(gè)連續(xù)偶數(shù)(奇數(shù)):若中間的一個(gè)數(shù)為x,則另兩個(gè)數(shù)分別為x-2,x+2。
三位數(shù)的表示方法:設(shè)百位、十位、個(gè)位上的數(shù)字分別為a,b,c,則這個(gè)三位數(shù)是100a+10b+c.(2)增長(zhǎng)率問(wèn)題
設(shè)初始量為a,終止量為b,平均增長(zhǎng)率或平均降低率為x,則經(jīng)過(guò)兩次的增長(zhǎng)或降低后的等量關(guān)系為a(1x)2=b。(3)利潤(rùn)問(wèn)題
利潤(rùn)問(wèn)題常用的相等關(guān)系式有:①總利潤(rùn)=總銷(xiāo)售價(jià)-總成本;②總利潤(rùn)=單位利潤(rùn)×總銷(xiāo)售量;③利潤(rùn)=成本×利潤(rùn)率
(4)圖形的面積問(wèn)題
根據(jù)圖形的面積與圖形的邊、高等相關(guān)元素的關(guān)系,將圖形的面積用含有未知數(shù)的代數(shù)式表示出來(lái),建立一元二次方程。
第二十三章旋轉(zhuǎn)23.1圖形的旋轉(zhuǎn)
知識(shí)點(diǎn)一旋轉(zhuǎn)的定義
在平面內(nèi),把一個(gè)平面圖形繞著平面內(nèi)某一點(diǎn)O轉(zhuǎn)動(dòng)一個(gè)角度,就叫做圖形的旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角叫做旋轉(zhuǎn)角。
我們把旋轉(zhuǎn)中心、旋轉(zhuǎn)角度、旋轉(zhuǎn)方向稱為旋轉(zhuǎn)的三要素。知識(shí)點(diǎn)二旋轉(zhuǎn)的性質(zhì)
旋轉(zhuǎn)的特征:(1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;(2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(3)旋轉(zhuǎn)前后的圖形全等。理解以下幾點(diǎn):(1)
圖形中的每一個(gè)點(diǎn)都繞旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度。(2)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等。(3)圖形的大小和形狀都沒(méi)有發(fā)生改變,只改變了圖形的位置。
知識(shí)點(diǎn)三利用旋轉(zhuǎn)性質(zhì)作圖
旋轉(zhuǎn)有兩條重要性質(zhì):(1)任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(2)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,它是利用旋轉(zhuǎn)的性質(zhì)作圖的關(guān)鍵。步驟可分為:①連:即連接圖形中每一個(gè)關(guān)鍵點(diǎn)與旋轉(zhuǎn)中心;
②轉(zhuǎn):即把直線按要求繞旋轉(zhuǎn)中心轉(zhuǎn)過(guò)一定角度(作旋轉(zhuǎn)角)
③截:即在角的另一邊上截取關(guān)鍵點(diǎn)到旋轉(zhuǎn)中心的距離,得到各點(diǎn)的對(duì)應(yīng)點(diǎn);④接:即連接到所連接的各點(diǎn)。
23.2中心對(duì)稱
知識(shí)點(diǎn)一中心對(duì)稱的定義
中心對(duì)稱:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心。注意以下幾點(diǎn):
中心對(duì)稱指的是兩個(gè)圖形的位置關(guān)系;只有一個(gè)對(duì)稱中心;繞對(duì)稱中心旋轉(zhuǎn)180°兩個(gè)圖形能夠完全重合。知識(shí)點(diǎn)二作一個(gè)圖形關(guān)于某點(diǎn)對(duì)稱的圖形
要作出一個(gè)圖形關(guān)于某一點(diǎn)的成中心對(duì)稱的圖形,關(guān)鍵是作出該圖形上關(guān)鍵點(diǎn)關(guān)于對(duì)稱中心的對(duì)稱點(diǎn)。最后將對(duì)稱點(diǎn)按照原圖形的形狀連接起來(lái),即可得出成中心對(duì)稱圖形。知識(shí)點(diǎn)三中心對(duì)稱的性質(zhì)有以下幾點(diǎn):(1)(2)(3)
關(guān)于中心對(duì)稱的兩個(gè)圖形上的對(duì)應(yīng)點(diǎn)的連線都經(jīng)過(guò)對(duì)稱中心,并且都被對(duì)稱中心平分;關(guān)于中心對(duì)稱的兩個(gè)圖形能夠互相重合,是全等形;
關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)應(yīng)線段平行(或共線)且相等。
知識(shí)點(diǎn)四中心對(duì)稱圖形的定義
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。知識(shí)點(diǎn)五關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)
在平面直角坐標(biāo)系中,如果兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱,它們的坐標(biāo)符號(hào)相反,即點(diǎn)p(x,y)關(guān)于原點(diǎn)對(duì)稱點(diǎn)為(-x,-y)。
第二十四章圓24.1圓24.1.1圓
知識(shí)點(diǎn)一圓的定義
圓的定義:第一種:在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫作圓。固定的端點(diǎn)O叫作圓心,線段OA叫作半徑。第二種:圓心為O,半徑為r的圓可以看成是所有到定點(diǎn)O的距離等于定長(zhǎng)r的點(diǎn)的集合。
比較圓的兩種定義可知:第一種定義是圓的形成進(jìn)行描述的,第二種是運(yùn)用集合的觀點(diǎn)下的定義,但是都說(shuō)明確定了定點(diǎn)與定長(zhǎng),也就確定了圓。知識(shí)點(diǎn)二圓的相關(guān)概念(1)(2)
弦:連接圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫作直徑。
弧:圓上任意兩點(diǎn)間的部分叫做圓弧,簡(jiǎn)稱弧。圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都叫做半圓。
(3)(4)
等圓:等夠重合的兩個(gè)圓叫做等圓。
等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧。
弦是線段,弧是曲線,判斷等弧首要的條件是在同圓或等圓中,只有在同圓或等圓中完全重合的弧才是等弧,而不是長(zhǎng)度相等的弧。
24.1.2垂直于弦的直徑
知識(shí)點(diǎn)一圓的對(duì)稱性
圓是軸對(duì)稱圖形,任何一條直徑所在直線都是它的對(duì)稱軸。知識(shí)點(diǎn)二垂徑定理
(1)垂徑定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧。如圖所示,直徑為CD,AB是弦,且CD⊥AB,
CMABAM=BMD垂足為MAC=B
AD=BD垂徑定理的推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧如上圖所示,直徑CD與非直徑弦AB相交于點(diǎn)M,CD⊥ABAM=BMAC=BCAD=BD注意:因?yàn)閳A的兩條直徑必須互相平分,所以垂徑定理的推論中,被平分的弦必須不是直徑,否則結(jié)論不成立。
24.1.3弧、弦、圓心角
知識(shí)點(diǎn)弦、弧、圓心角的關(guān)系(1)
弦、弧、圓心角之間的關(guān)系定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等。
(2)
在同圓或等圓中,如果兩個(gè)圓心角,兩條弧,兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余的各組量也相等。
(3)
注意不能忽略同圓或等圓這個(gè)前提條件,如果丟掉這個(gè)條件,即使圓心角相等,所對(duì)的弧、弦也不一定相等,比如兩個(gè)同心圓中,兩個(gè)圓心角相同,但此時(shí)弧、弦不一定相等。24.1.4圓周角
知識(shí)點(diǎn)一圓周角定理(1)
圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半。
(2)(3)
圓周角定理的推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)弦是直徑。圓周角定理揭示了同弧或等弧所對(duì)的圓周角與圓心角的大小關(guān)系。“同弧或等弧”是不能改為“同弦或等弦”的,否則就不成立了,因?yàn)橐粭l弦所對(duì)的圓周角有兩類(lèi)。
知識(shí)點(diǎn)二圓內(nèi)接四邊形及其性質(zhì)
圓內(nèi)接多邊形:如果一個(gè)多邊形的所有頂點(diǎn)都在同一個(gè)圓上,這個(gè)多邊形叫做圓內(nèi)接多邊形,這個(gè)圓叫做這個(gè)多邊形的外接圓。
圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對(duì)角互補(bǔ)。
24.2點(diǎn)、直線、圓和圓的位置關(guān)系24.2.1點(diǎn)和圓的位置關(guān)系
知識(shí)點(diǎn)一點(diǎn)與圓的位置關(guān)系
(1)(2)
點(diǎn)與圓的位置關(guān)系有:點(diǎn)在圓外,點(diǎn)在圓上,點(diǎn)在圓內(nèi)三種。用數(shù)量關(guān)系表示:若設(shè)⊙O的半徑是r,點(diǎn)P到圓的距離OP=d,則有:
點(diǎn)P在圓外d>r;點(diǎn)p在圓上d=r;點(diǎn)p在圓內(nèi)d<r。知識(shí)點(diǎn)二過(guò)已知點(diǎn)作圓(1)
O1AO2
O3(2)
經(jīng)過(guò)兩點(diǎn)的圓(如點(diǎn)A、B)經(jīng)過(guò)一個(gè)點(diǎn)的圓(如點(diǎn)A)
以點(diǎn)A外的任意一點(diǎn)(如點(diǎn)O)為圓心,以O(shè)A為半徑作圓即可,如圖,這樣的圓可以作無(wú)數(shù)個(gè)。
以線段AB的垂直平分線上的任意一點(diǎn)(如點(diǎn)O)為圓心,以O(shè)A(或OB)為半徑作圓即可,如圖,這樣的圓可以作無(wú)數(shù)個(gè)。
AB(3)
經(jīng)過(guò)三點(diǎn)的圓
①經(jīng)過(guò)在同一條直線上的三個(gè)點(diǎn)不能作圓
②不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓,即經(jīng)過(guò)不在同一條直線上的三個(gè)點(diǎn)可以作圓,且只能作一個(gè)
圓。如經(jīng)過(guò)不在同一條直線上的三個(gè)點(diǎn)A、B、C作圓,作法:連接AB、BC(或AB、AC或BC、AC)并作它們的垂直平分線,兩條垂直平分線相交于點(diǎn)O,以點(diǎn)O為圓心,以O(shè)A(或OB、OC)的長(zhǎng)為半徑作圓即可,如圖,這樣的圓只能作一個(gè)。
知識(shí)點(diǎn)三三角形的外接圓與外心(1)(2)
經(jīng)過(guò)三角形三個(gè)頂點(diǎn)可以作一個(gè)圓,這個(gè)圓叫做三角形的外接圓。
外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),叫做這個(gè)三角形的外心。
AOBC知識(shí)點(diǎn)四反證法(1)(2)
反證法:假設(shè)命題的結(jié)論不成立,經(jīng)過(guò)推理得出矛盾,由矛盾斷定所作假設(shè)不正確,從而得到原命題成立,這種證明命題的方法叫做反證法。反證法的一般步驟:
①假設(shè)命題的結(jié)論不成立;
②從假設(shè)出發(fā),經(jīng)過(guò)邏輯推理,推出或與定義,或與公理,或與定理,或與已知等相矛盾的結(jié)論;③由矛盾判定假設(shè)不正確,從而得出原命題正確。
24.2.2直線和圓的位置關(guān)系
知識(shí)點(diǎn)一直線與圓的位置關(guān)系(1)(2)
直線與圓的位置關(guān)系有:相交、相切、相離三種。直線與圓的位置關(guān)系可以用數(shù)量關(guān)系表示
若設(shè)⊙O的半徑是r,直線l與圓心0的距離為d,則有:直線l和⊙O相交d<r;直線l和⊙O相切d=r;直線l和⊙O相離d>r。知識(shí)點(diǎn)二切線的判定和性質(zhì)(1)(2)(3)
切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑。
切線的其他性質(zhì):切線與圓只有一個(gè)公共點(diǎn);切線到圓心的距離等于半徑;經(jīng)過(guò)圓心且垂直于切線的直線必過(guò)切點(diǎn);必過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。
知識(shí)點(diǎn)三切線長(zhǎng)定理(1)(2)
切線長(zhǎng)的定義:經(jīng)過(guò)園外一點(diǎn)作圓的切線,這點(diǎn)和切點(diǎn)之間的線段的長(zhǎng),叫做這點(diǎn)到圓的切線長(zhǎng)。切線長(zhǎng)定理:從圓外一點(diǎn)可以引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
(3)
注意:切線和切線長(zhǎng)是兩個(gè)完全不同的概念,必須弄清楚切線是直線,是不能度量的;切線長(zhǎng)是一條線段的長(zhǎng),這條線段的兩個(gè)端點(diǎn)一個(gè)是在圓外一點(diǎn),另一個(gè)是切點(diǎn)。
知識(shí)點(diǎn)四三角形的內(nèi)切圓和內(nèi)心
(1)三角形的內(nèi)切圓定義:與三角形各邊都相切的圓叫做三角形的內(nèi)切圓。這個(gè)三角形叫做圓的外切三角形。
(2)三角形的內(nèi)心:三角形內(nèi)切圓的圓心叫做三角形的內(nèi)心。
(3)注意:三角形的內(nèi)心是三角形三條角平分線的交點(diǎn),所以當(dāng)三角形的內(nèi)心已知時(shí),過(guò)三角形的頂點(diǎn)和
內(nèi)心的射線,必平分三角形的內(nèi)角。
24.2.3圓和圓的位置關(guān)系
知識(shí)點(diǎn)一圓與圓的位置關(guān)系(1)
圓與圓的位置關(guān)系有五種:
①如果兩個(gè)圓沒(méi)有公共點(diǎn),就說(shuō)這兩個(gè)圓相離,包括外離和內(nèi)含兩種;②如果兩個(gè)圓只有一個(gè)公共點(diǎn),就說(shuō)這兩個(gè)圓相切,包括內(nèi)切和外切兩種;③如果兩個(gè)圓有兩個(gè)公共點(diǎn),就說(shuō)這兩個(gè)圓相交。(2)
圓與圓的位置關(guān)系可以用數(shù)量關(guān)系來(lái)表示:
若設(shè)兩圓圓心之間的距離為d,兩圓的半徑分別是r1r2,且r1<r2,則有①兩圓外離d>r1+r2②兩圓外切d=r1+r2③兩圓相交r2-r1<d<r1+r2④兩圓內(nèi)切d=r2-r1⑤兩圓內(nèi)含d<r2-r1
24.3正多邊形和圓
知識(shí)點(diǎn)一正多邊形的外接圓和圓的內(nèi)接正多邊形
正多邊形與圓的關(guān)系非常密切,把圓分成n(n是大于2的自然數(shù))等份,順次連接各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形,這個(gè)圓就是這個(gè)正多邊形的外接圓。
正多邊形的中心:一個(gè)正多邊形的外接圓的圓心叫做這個(gè)正多邊形的中心。正多邊形的半徑:外接圓的半徑叫做正多邊形的半徑。
正多邊形的中心角:正多邊形每一條邊所對(duì)的圓心角叫做正多邊形的中心角。正多邊形的邊心距:中心到正多邊形一邊的距離叫做正多邊形的邊心距。知識(shí)點(diǎn)二正多邊形的性質(zhì)(1)(2)
正n邊形的半徑和邊心距把正多邊形分成2n個(gè)全等的直角三角形。
所有的正多邊形都是軸對(duì)稱圖形,每個(gè)正n邊形共有n條對(duì)稱軸,每條對(duì)稱軸都經(jīng)過(guò)正n邊形的中心;當(dāng)正n邊形的邊數(shù)為偶數(shù)時(shí),這個(gè)正n邊形也是中心對(duì)稱圖形,正n邊形的中心就是對(duì)稱中心。
(3)
正n邊形的每一個(gè)內(nèi)角等于
(n2)180n,中心角和外角相等,等于
360n。
24.4弧長(zhǎng)和扇形面積
知識(shí)點(diǎn)一弧長(zhǎng)公式l=
nR180
在半徑為R的圓中,360°的圓心角所對(duì)的弧長(zhǎng)就是圓的周長(zhǎng)C=2πR,所以n°的圓心角所對(duì)的弧長(zhǎng)的計(jì)算公式l=
n360×2πR=
nR180。
知識(shí)點(diǎn)二扇形面積公式
在半徑為R的圓中,360°的圓心角所對(duì)的扇形面積就是圓的面積S=πR2,所以圓心角為n°的扇形的面積為S扇形=
nR3602。
比較扇形的弧長(zhǎng)公式和面積公式發(fā)現(xiàn):
S扇形=
nR3602nR18012R12lR,所以s扇形12lR
知識(shí)點(diǎn)三圓錐的側(cè)面積和全面積
圓錐的側(cè)面積是曲面,沿著圓錐的一條母線將圓錐的側(cè)面展開(kāi),容易得到圓錐的側(cè)面展開(kāi)圖是一個(gè)扇形。設(shè)圓錐的母線長(zhǎng)為l,底面圓的半徑為r,那么這個(gè)扇形的半徑為l,扇形的弧長(zhǎng)為2πr,因此圓錐的側(cè)面積
s圓錐側(cè)122rlrl。圓錐的全面積為s圓錐全s圓錐側(cè)s底2rlr。
25.1隨機(jī)事件與概率
25.1.1隨機(jī)事件
知識(shí)點(diǎn)一必然事件、不可能事件、隨機(jī)事件
在一定條件下,有些事件必然會(huì)發(fā)生,這樣的事件稱為必然事件;相反地,有些事件必然不會(huì)發(fā)生,這樣的事件稱為不可能事件;在一定條件下,可能發(fā)生也可能不會(huì)發(fā)生的事件稱為隨機(jī)事件。
必然事件和不可能事件是否會(huì)發(fā)生,是可以事先確定的,所以它們統(tǒng)稱為確定性事件。知識(shí)點(diǎn)二事件發(fā)生的可能性的大小
必然事件的可能性最大,不可能事件的可能性最小,隨機(jī)事件發(fā)生的可能性有大有小。不同的隨機(jī)事件發(fā)生的可能性的大小有可能不同。
25.1.2概率
知識(shí)點(diǎn)概率
一般地,對(duì)于一個(gè)隨機(jī)事件A,我們把刻畫(huà)其發(fā)生可能性大小的數(shù)值,稱為隨機(jī)事件A發(fā)生的概率,記作P(A)。
一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率P(A)=0≤P(A)≤1.
當(dāng)A為必然事件時(shí),P(A)=1;當(dāng)A為不可能事件時(shí),P(A)=0.
mn。由m和n的含義可知0≤m≤n,因此0≤
mn≤1,因此
25.2用列舉法求概率
知識(shí)點(diǎn)一用列舉法求概率
一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率P(A)=知識(shí)點(diǎn)二用列表發(fā)求概率
當(dāng)一次試驗(yàn)要涉及兩個(gè)因素并且可能出現(xiàn)的結(jié)果數(shù)目較多時(shí),為不重不漏地列出所有可能的結(jié)果,通常用列表法。
列表法是用表格的形式反映事件發(fā)生的各種情況出現(xiàn)的次數(shù)和方式,以及某一事件發(fā)生的可能的次數(shù)和方式,并求出概率的方法。
mn。知識(shí)點(diǎn)三用樹(shù)形圖求概率
當(dāng)一次試驗(yàn)要涉及3個(gè)或更多的因素時(shí),列方形表就不方便了,為不重不漏地列出所有可能的結(jié)果,通常采用樹(shù)形圖。樹(shù)形圖是反映事件發(fā)生的各種情況出現(xiàn)的次數(shù)和方式,并求出概率的方法。
(1)(2)
樹(shù)形圖法同樣適用于各種情況出現(xiàn)的總次數(shù)不是很大時(shí)求概率的方法。
在用列表法和樹(shù)形圖法求隨機(jī)事件的概率時(shí),應(yīng)注意各種情況出現(xiàn)的可能性務(wù)必相同。
25.3用頻率估計(jì)概率
知識(shí)點(diǎn)
在隨機(jī)事件中,一個(gè)隨機(jī)事件發(fā)生與否事先無(wú)法預(yù)測(cè),表面上看似無(wú)規(guī)律可循,但當(dāng)我們做大量重復(fù)試驗(yàn)時(shí),這個(gè)事件發(fā)生的頻率呈現(xiàn)出穩(wěn)定性,因此做了大量試驗(yàn)后,可以用一個(gè)事件發(fā)生的頻率作為這個(gè)事件的概率的估計(jì)值。
一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率
mn穩(wěn)定于某一個(gè)常數(shù)P,那么事件A發(fā)生的頻率
P(A)=p。
友情提示:本文中關(guān)于《數(shù)學(xué)九年級(jí)上期知識(shí)點(diǎn)總結(jié)(全)》給出的范例僅供您參考拓展思維使用,數(shù)學(xué)九年級(jí)上期知識(shí)點(diǎn)總結(jié)(全):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。