七年級上冊數(shù)學(xué)知識點(diǎn)總結(jié)
北師大版七年級上冊數(shù)學(xué)各章節(jié)知識點(diǎn)總結(jié)
第一章豐富的圖形世界
1、幾何圖形
從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。2、點(diǎn)、線、面、體(1)幾何圖形的組成
點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。體:幾何體也簡稱體。(2)點(diǎn)動成線,線動成面,面動成體。
3、生活中的立體圖形圓柱柱
生活中的立體圖形球棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、(按名稱分)錐圓錐棱錐
4、棱柱及其有關(guān)概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。
n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點(diǎn)。5、正方體的平面展開圖:11種
6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖
俯視圖:從上面看到的圖,叫做俯視圖。
8、多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。從一個n邊形的同一個頂點(diǎn)出發(fā),分別連接這個頂點(diǎn)與其余各頂點(diǎn),可以把這個n邊形分割成(n-2)個三角形。
。簣A上A、B兩點(diǎn)之間的部分叫做弧。
扇形:由一條弧和經(jīng)過這條弧的端點(diǎn)的兩條半徑所組成的圖形叫做扇形。
第二章有理數(shù)及其運(yùn)算
1、有理數(shù)的分類正有理數(shù)
有理數(shù)零有限小數(shù)和無限循環(huán)小數(shù)負(fù)有理數(shù)或整數(shù)有理數(shù)分?jǐn)?shù)
2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零
3、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點(diǎn)來表示。解題時要真正掌握數(shù)形結(jié)合的思想,并能靈活運(yùn)用。
4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。
5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。6、有理數(shù)比較大。赫龜(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù);數(shù)軸上的兩個點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。7、有理數(shù)的運(yùn)算:
(1)五種運(yùn)算:加、減、乘、除、乘方(2)有理數(shù)的運(yùn)算順序
先算乘方,再算乘除,最后算加減,如果有括號,就先算括號里面的。(3)運(yùn)算律加法交換律abba加法結(jié)合律)()(cbacba乘法交換律baab乘法結(jié)合律)()(bcacab乘法對加法的分配律acabcba)(第三章字母表示數(shù)1、代數(shù)式
用運(yùn)算符號把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個數(shù)或一個字母也是代數(shù)式。
2、同類項(xiàng)所有字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。幾個常數(shù)項(xiàng)也是同類項(xiàng)。
3、合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。4、去括號法則(1)括號前是“+”,把括號和它前面的“+”號去掉后,原括號里各項(xiàng)的符號都不改變。(2)括號前是“”,把括號和它前面的“”號去掉后,原括號里各項(xiàng)的符號都要改變。5、整式的運(yùn)算:整式的加減法:(1)去括號;(2)合并同類項(xiàng)。
第四章平面圖形及其位置關(guān)系
1、線段:繃緊的琴弦,人行橫道線都可以近似的看做線段。線段有兩個端點(diǎn)。2、射線:將線段向一個方向無限延長就形成了射線。射線有一個端點(diǎn)。3、直線:將線段向兩個方向無限延長就形成了直線。直線沒有端點(diǎn)。4、點(diǎn)、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。一個點(diǎn)可以用一個大寫字母表示。一條直線可以用一個小寫字母表示或用直線上兩個點(diǎn)的大寫字母表示。
一條射線可以用一個小寫字母表示或用端點(diǎn)和射線上另一點(diǎn)來表示(端點(diǎn)字母寫在前面)。一條線段可以用一個小寫字母表示或用它的端點(diǎn)的兩個大寫字母來表示。5、點(diǎn)和直線的位置關(guān)系有兩種:
①點(diǎn)在直線上,或者說直線經(jīng)過這個點(diǎn)。②點(diǎn)在直線外,或者說直線不經(jīng)過這個點(diǎn)。6、直線的性質(zhì)
(1)直線公理:經(jīng)過兩個點(diǎn)有且只有一條直線。(2)過一點(diǎn)的直線有無數(shù)條。
(3)直線是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。(4)直線上有無窮多個點(diǎn)。
(5)兩條不同的直線至多有一個公共點(diǎn)。7、線段的性質(zhì)(1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。
(2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。(3)線段的中點(diǎn)到兩端點(diǎn)的距離相等。
(4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。8、線段的中點(diǎn):
點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。9、角:
有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個角的頂點(diǎn),這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。
10、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。11、角的表示
角的表示方法有以下四種:
①用數(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨(dú)的一個角,如∠α,∠β,∠γ,∠θ等。③用一個大寫英文字母表示一個獨(dú)立(在一個頂點(diǎn)處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫英文字母表示角時,一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。12、角的度量
角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。1°=60’,1’=60”13、角的性質(zhì)
(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運(yùn)算。14、角的平分線
從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
15、平行線:
在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。注意:
(1)平行線是無限延伸的,無論怎樣延伸也不相交。
(2)當(dāng)遇到線段、射線平行時,指的是線段、射線所在的直線平行。16、平行線公理及其推論
平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補(bǔ)充平行線的判定方法:
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。
17、垂直:兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。18、垂線的性質(zhì):
性質(zhì)1:平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短。簡稱:垂線段最短。19、點(diǎn)到直線的距離:過A點(diǎn)作l的垂線,垂足為B點(diǎn),線段AB的長度叫做點(diǎn)A到直線l的距離。
20、同一平面內(nèi),兩條直線的位置關(guān)系:相交或平行。
.第五章一元一次方程
1、方程含有未知數(shù)的等式叫做方程。2、方程的解
能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。3、等式的性質(zhì)
(1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。(2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。4、一元一次方程只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。5、解一元一次方程的一般步驟:
(1)去分母(2)去括號(3)移項(xiàng)(把方程中的某一項(xiàng)改變符號后,從方程的一邊移到另一邊,這種變形叫移項(xiàng)。)(4)合并同類項(xiàng)(5)將未知數(shù)的系數(shù)化為1
第六章生活中的數(shù)據(jù)
1、科學(xué)記數(shù)法
一般地,一個大于10的數(shù)可以表示成na10的形式,其中101a,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。2、扇形統(tǒng)計圖及其畫法:
扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,即圓代表總體,圓中的各個扇形分別代表總體中的不同部分,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。畫法:
(1)計算不同部分占總體的百分比(在扇形中,每部分占總體的百分比等于該部分所對應(yīng)的扇形圓心角的度數(shù)與360的比)。
(2)計算各個扇形的圓心角(頂點(diǎn)在圓心的角叫做圓心角)的度數(shù)。(3)在圓中畫出各個扇形,并標(biāo)上百分比。3、各種統(tǒng)計圖的優(yōu)缺點(diǎn)
條形統(tǒng)計圖:能清楚地表示出每個項(xiàng)目的具體數(shù)目。折線統(tǒng)計圖:能清楚地反映事物的變化情況。
扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。
第七章可能性
1、確定事件和不確定事件(1)、確定事件
必然事件:生活中,有些事情我們事先能肯定它一定會發(fā)生,這些事情稱為必然事件。不可能事件:有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為不可能事件。(2)、不確定事件:
有些事情我們事先無法肯定它會不會發(fā)生,這些事情稱為不確定事件(3)、必然事件確定事件
事件不可能事件不確定事件2、不確定事件發(fā)生的可能性
一般地,不確定事件發(fā)生的可能性是有大小的。必然事件發(fā)生的可能性是1不可能事件發(fā)生的可能性是
擴(kuò)展閱讀:初中數(shù)學(xué)七年級上冊知識點(diǎn)總結(jié)
提分?jǐn)?shù)學(xué)
提分?jǐn)?shù)學(xué)七年級上知識清單
第一章有理數(shù)
一.正數(shù)和負(fù)數(shù)
⒈正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時,-a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時,-a是正數(shù);當(dāng)a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負(fù)號的數(shù)是負(fù)數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。2.具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數(shù):比原先多了的數(shù),增加增長了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的數(shù)一般記為負(fù)數(shù)。3.0表示的意義
⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;⑵0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。
二.有理數(shù)
1.有理數(shù)的概念
⑴正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))⑵正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)
⑶正整數(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像-2,-4,-6,-8也是偶數(shù),-1,-3,-5也是奇數(shù)。2.(1)凡能寫成
q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)p分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
提分?jǐn)?shù)學(xué)
正整數(shù)正有理數(shù)正分?jǐn)?shù)(2)有理數(shù)的分類:①按正、負(fù)分類:有理數(shù)零
負(fù)整數(shù)負(fù)有理數(shù)負(fù)分?jǐn)?shù)正整數(shù)整數(shù)零②按有理數(shù)的意義來分:有理數(shù)負(fù)整數(shù)正分?jǐn)?shù)分?jǐn)?shù)負(fù)分?jǐn)?shù)總結(jié):①正整數(shù)、0統(tǒng)稱為非負(fù)整數(shù)(也叫自然數(shù))②負(fù)整數(shù)、0統(tǒng)稱為非正整數(shù)③正有理數(shù)、0統(tǒng)稱為非負(fù)有理數(shù)④負(fù)有理數(shù)、0統(tǒng)稱為非正有理數(shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0a是負(fù)數(shù)或0a是非正數(shù).
三.?dāng)?shù)軸
⒈數(shù)軸的概念
規(guī)定了原點(diǎn),正方向,單位長度的直線叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點(diǎn)、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的。2.數(shù)軸上的點(diǎn)與有理數(shù)的關(guān)系
⑴所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。
⑵所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)表示出來,但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點(diǎn)不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))3.利用數(shù)軸表示兩數(shù)大小
⑴在數(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);⑶兩個負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。
提分?jǐn)?shù)學(xué)
4.數(shù)軸上特殊的最大(。⿺(shù)
⑴最小的自然數(shù)是0,無最大的自然數(shù);⑵最小的正整數(shù)是1,無最大的正整數(shù);⑶最大的負(fù)整數(shù)是-1,無最小的負(fù)整數(shù)5.a可以表示什么數(shù)
⑴a>0表示a是正數(shù);反之,a是正數(shù),則a>0;⑵a提分?jǐn)?shù)學(xué)
⑴一般地,數(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。當(dāng)a>0時,-a0,那么|a|=a;②如果a0),則x=±a;
⑸互為相反數(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;|a|是重要的非負(fù)數(shù),即
提分?jǐn)?shù)學(xué)
|a|≥0;注意:|a||b|=|ab|,
abab⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;
⑺若幾個數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。(非負(fù)數(shù)的常用性質(zhì):若幾個非負(fù)數(shù)的和為0,則有且只有這幾個非負(fù)數(shù)同時為0)4.有理數(shù)大小的比較
⑴利用數(shù)軸比較兩個數(shù)的大。簲(shù)軸上的兩個數(shù)相比較,左邊的數(shù)總比右邊的數(shù)小,或者右邊的數(shù)總比左邊的數(shù)大
⑵利用絕對值比較兩個負(fù)數(shù)的大。簝蓚負(fù)數(shù)比較大小,絕對值大的反而;異號兩數(shù)比較大小,正數(shù)大于負(fù)數(shù)。
(3)正數(shù)的絕對值越大,這個數(shù)越大;(4)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0。唬5)正數(shù)大于一切負(fù)數(shù);
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.5.絕對值的化簡
①當(dāng)a≥0時,|a|=a;②當(dāng)a≤0時,|a|=-a6.已知一個數(shù)的絕對值,求這個數(shù)
一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負(fù)數(shù)的數(shù)。
六.有理數(shù)的加減法.
1.有理數(shù)的加法法則
⑴同號兩數(shù)相加,取相同的符號,并把絕對值相加;
⑵絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數(shù)的兩數(shù)相加,和為零;⑷一個數(shù)與0相加,仍得這個數(shù)。2.有理數(shù)加法的運(yùn)算律⑴加法交換律:a+b=b+a⑵加法結(jié)合律:(a+b)+c=a+(b+c)
在運(yùn)用運(yùn)算律時,一定要根據(jù)需要靈活運(yùn)用,以達(dá)到化簡的目的,通常有下列規(guī)律:①互為相反數(shù)的兩個數(shù)先相加“相反數(shù)結(jié)合法”;
提分?jǐn)?shù)學(xué)
②符號相同的兩個數(shù)先相加“同號結(jié)合法”;③分母相同的數(shù)先相加“同分母結(jié)合法”;④幾個數(shù)相加得到整數(shù),先相加“湊整法”;⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加“同形結(jié)合法”。3.加法性質(zhì)
一個數(shù)加正數(shù)后的和比原數(shù)大;加負(fù)數(shù)后的和比原數(shù)小;加0后的和等于原數(shù)。即:⑴當(dāng)b>0時,a+b>a⑵當(dāng)b提分?jǐn)?shù)學(xué)
Ⅲ.把分母相同或便于通分的加數(shù)相結(jié)合(同分母結(jié)合法)--
313217+-+-524528321137)+(-+)+(+-)55224818原式=(--
=-1+0-
=-1
Ⅳ.既有小數(shù)又有分?jǐn)?shù)的運(yùn)算要統(tǒng)一后再結(jié)合(先統(tǒng)一后結(jié)合)(+0.125)-(-3
18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3
18=+3
183121-3+10-14834=(3
31112-1)+(-3)+1044883=2
12-3+102316=-3+13
=10
16617-12+41122151761)+(-)
5151122Ⅴ.把帶分?jǐn)?shù)拆分后再結(jié)合(先拆分后結(jié)合)-3+10
15原式=(-3+10-12+4)+(-+
=-1+
411+1522提分?jǐn)?shù)學(xué)
=-1+
815+3030=-
730Ⅵ.分組結(jié)合
2-3-4+5+6-7-8+9+66-67-68+69
原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)
=0Ⅶ.先拆項(xiàng)后結(jié)合
(1+3+5+7+99)-(2+4+6+8+100)
七.有理數(shù)的乘除法
1.有理數(shù)的乘法法則
法則一:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;(“同號得正,異號得負(fù)”專指“兩數(shù)相乘”的情況,如果因數(shù)超過兩個,就必須運(yùn)用法則三)法則二:任何數(shù)同0相乘,都得0;
法則三:幾個不是0的數(shù)相乘,負(fù)因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積是負(fù)數(shù);法則四:幾個數(shù)相乘,如果其中有因數(shù)為0,則積等于0.2.倒數(shù)
乘積是1的兩個數(shù)互為倒數(shù),其中一個數(shù)叫做另一個數(shù)的倒數(shù),用式子表示為a
1=1(a≠0),就是說aa和
111互為倒數(shù),即a是的倒數(shù),是a的倒數(shù)。aaa1互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么a的倒數(shù)是;倒數(shù)是本身的數(shù)
a是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).注意:①0沒有倒數(shù);
②求假分?jǐn)?shù)或真分?jǐn)?shù)的倒數(shù),只要把這個分?jǐn)?shù)的分子、分母點(diǎn)顛倒位置即可;求帶分?jǐn)?shù)的倒數(shù)時,先把帶分?jǐn)?shù)化為假分?jǐn)?shù),再把分子、分母顛倒位置;
③正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(求一個數(shù)的倒數(shù),不改變這個數(shù)的性質(zhì));④倒數(shù)等于它本身的數(shù)是1或-1,不包括0。3.有理數(shù)的乘法運(yùn)算律
提分?jǐn)?shù)學(xué)
⑴乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。即ab=ba⑵乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,在把積相加。即a(b+c)=ab+ac4.有理數(shù)的除法法則
(1)除以一個不等0的數(shù),等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即無意義(2)兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得05.有理數(shù)的乘除混合運(yùn)算
(1)乘除混合運(yùn)算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。
(2)有理數(shù)的加減乘除混合運(yùn)算,如無括號指出先做什么運(yùn)算,則按照‘先乘除,后加減’的順序進(jìn)行。
a0八.有理數(shù)的乘方
1.乘方的概念
求n個相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在a中,a叫做底數(shù),n叫做指數(shù)。(1)a是重要的非負(fù)數(shù),即a≥0;若a+|b|=0a=0,b=0;
0.120.01211(2)據(jù)規(guī)律2底數(shù)的小數(shù)點(diǎn)移動一位,平方數(shù)的小數(shù)點(diǎn)移動二位
101002
22n2.乘方的性質(zhì)
(1)負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪的正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)=-a或(a-b)=-(b-a),當(dāng)
n為正偶數(shù)時:(-a)=a或(a-b)=(b-a).
(2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。
nnnnnnnn九.有理數(shù)的混合運(yùn)算
做有理數(shù)的混合運(yùn)算時,應(yīng)注意以下運(yùn)算順序:1.先乘方,再乘除,最后加減;2.同級運(yùn)算,從左到右進(jìn)行;
3.如有括號,先做括號內(nèi)的運(yùn)算,按小括號,中括號,大括號依次進(jìn)行。
十.科學(xué)記數(shù)法
把一個大于10的數(shù)表示成a10的形式(其中1a10,n是正整數(shù)),這種記數(shù)法是科學(xué)記數(shù)法
-9-
n提分?jǐn)?shù)學(xué)
近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.
有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.混合運(yùn)算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準(zhǔn)確,是數(shù)學(xué)計算的最重要的原
則.
特殊值法:是用符合題目要求的數(shù)代入,并驗(yàn)證題設(shè)成立而進(jìn)行猜想的一種方法,但不能用于證明.
等于本身的數(shù)匯總:相反數(shù)等于本身的數(shù):0倒數(shù)等于本身的數(shù):1,-1絕對值等于本身的數(shù):正數(shù)和0平方等于本身的數(shù):0,1立方等于本身的數(shù):0,1,-1.
第二章整式的加減
一.用字母表示數(shù)(代數(shù)初步知識)
1.代數(shù)式:用運(yùn)算符號“+-÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實(shí)際生活或生產(chǎn)有意義;單獨(dú)一個數(shù)或一個字母也是代數(shù)式;用基本運(yùn)算符號把數(shù)和字母連接而成的式子叫做代數(shù)式,如n,-1,2n+500,abc。2.代數(shù)式書寫規(guī)范:
(1)數(shù)與字母相乘,或字母與字母相乘中通常使用“”乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應(yīng)使用“”乘,不用“”乘,也不能省略乘號;(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a5應(yīng)寫成5a;13(4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式,如a1應(yīng)寫成a;
223(5)在代數(shù)式中出現(xiàn)除法運(yùn)算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;
a提分?jǐn)?shù)學(xué)
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做
a-b和b-a.
出現(xiàn)除式時,用分?jǐn)?shù)表示;
(7)若運(yùn)算結(jié)果為加減的式子,當(dāng)后面有單位時,要用括號把整個式子括起來。3.幾個重要的代數(shù)式:(m、n表示整數(shù))
(1)a與b的平方差是:a-b;a與b差的平方是:(a-b);
(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;
(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)
是:n-1、n、n+1;
(4)若b>0,則正數(shù)是:a+b,負(fù)數(shù)是:-a-b,非負(fù)數(shù)是:a,非正數(shù)是:-a.
2222222二.整式
1.單項(xiàng)式:表示數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式。單獨(dú)的一個數(shù)或一個字母也是代數(shù)式。
2.單項(xiàng)式的系數(shù):單項(xiàng)式中的數(shù)字因數(shù);單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡稱單項(xiàng)式的系數(shù);
3.單項(xiàng)式的次數(shù):一個單項(xiàng)式中,所有字母的指數(shù)和
4多項(xiàng)式:幾個單項(xiàng)式的和叫做多項(xiàng)式。每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式里次數(shù)最高項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù)。常數(shù)項(xiàng)的次數(shù)為0。注意:(若a、b、c、p、q是常數(shù))ax+bx+c和x+px+q是常見的兩個二次三項(xiàng)式.
5整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式,即凡不含有除法運(yùn)算,或雖含有除法運(yùn)算但除式中不含字母的代數(shù)式叫整式.整式分類為:整式2
2單項(xiàng)式多項(xiàng)式.
注意:分母上含有字母的不是整式。
6.多項(xiàng)式的升冪和降冪排列:把一個多項(xiàng)式的各項(xiàng)按某個字母的指數(shù)從小到大(或從大到小)排列起來,
叫做按這個字母的升冪排列(或降冪排列).注意:多項(xiàng)式計算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列.
提分?jǐn)?shù)學(xué)
三.整式的加減
1.合并同類項(xiàng)
2同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。
3合并同類項(xiàng)的法則:同類項(xiàng)的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變。
4合并同類項(xiàng)的步驟:(1)準(zhǔn)確的找出同類項(xiàng);(2)運(yùn)用加法交換律,把同類項(xiàng)交換位置后結(jié)合在一起;(3)利用法則,把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變;(4)寫出合并后的結(jié)果。5去括號去括號的法則:
(1)括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項(xiàng)的符號都不變;(2)括號前面是“”號,把括號和它前面的“”號去掉,括號里各項(xiàng)的符號都要改變。
6添括號法則:添括號時,若括號前邊是“+”號,括號里的各項(xiàng)都不變號;若括號前邊是“-”號,括號
里的各項(xiàng)都要變號.
7整式的加減:進(jìn)行整式的加減運(yùn)算時,如果有括號先去括號,再合并同類項(xiàng);整式的加減,實(shí)際上是在去括號的基礎(chǔ)上,把多項(xiàng)式的同類項(xiàng)合并.
8整式加減的步驟:(1)列出代數(shù)式;(2)去括號;(3)添括號(4)合并同類項(xiàng)。
第三章一元一次方程
1等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2等式的性質(zhì):
等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3方程:含未知數(shù)的等式,叫方程.
4一元一次方程的概念:只含有一個未知數(shù)(元)(含未知數(shù)項(xiàng)的系數(shù)不是零)且未知數(shù)的指數(shù)是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)
1注意:未知數(shù)在分母中時,它的次數(shù)不能看成是1次。如3x,它不是一元一次方程。
x5解一元一次方程
提分?jǐn)?shù)學(xué)
方程的解:能使方程左右兩邊相等的未知數(shù)的值叫做方程的解;注意:“方程的解就能代入”驗(yàn)算!解方程:求方程的解的過程叫做解方程。
等式的性質(zhì):(1)等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是等式;(2)等式兩邊都乘或除以同一個不等于0的數(shù),所得結(jié)果仍是等式。
6移項(xiàng)
移項(xiàng):方程中的某些項(xiàng)改變符號后,可以從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。
移項(xiàng)的依據(jù):(1)移項(xiàng)實(shí)際上就是對方程兩邊進(jìn)行同時加減,根據(jù)是等式的性質(zhì)1;(2)系數(shù)化為1實(shí)際上就是對方程兩邊同時乘除,根據(jù)是等式的性質(zhì)2。
移項(xiàng)的作用:移項(xiàng)時一般把含未知數(shù)的項(xiàng)向左移,常數(shù)項(xiàng)往右移,使左邊對含未知數(shù)的項(xiàng)合并,右邊對常數(shù)項(xiàng)合并。
注意:移項(xiàng)時要跨越“=”號,移過的項(xiàng)一定要變號。
7解一元一次方程的一般步驟:整理方程、去分母、去括號、移項(xiàng)、合并同類項(xiàng)、未知數(shù)的系數(shù)化為1;(檢驗(yàn)方程的解)。
注意:去分母時不可漏乘不含分母的項(xiàng)。分?jǐn)?shù)線有括號的作用,去掉分母后,若分子是多項(xiàng)式,要加括號。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解決問題
列一元一次方程解應(yīng)用題的基本步驟:審清題意、設(shè)未知數(shù)(元)、列出方程、解方程、寫出答案。關(guān)鍵在于抓住問題中的有關(guān)數(shù)量的相等關(guān)系,列出方程。
解決問題的策略:利用表格和示意圖幫助分析實(shí)際問題中的數(shù)量關(guān)系9列一元一次方程解應(yīng)用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形
提分?jǐn)?shù)學(xué)
各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
10實(shí)際問題的常見類型:
(1)行程問題:路程=時間速度,時間=
路程路程,速度=速度時間(單位:路程米、千米;時間秒、分、時;速度米/秒、米/分、千米/小時)
(2)工程問題:工作總量=工作時間工作效率,工作效率工作時間工作總量;工作總量=各部分工作量的和;
工作效率利潤,售價=標(biāo)價(1-折扣);進(jìn)價工作總量;
工作時間(3)利潤問題:利潤=售價-進(jìn)價,利潤率=
(4)商品價格問題:售價=定價折
售價成本1100%;,利潤=售價-成本,利潤率成本10(5)利息問題:本息和=本金+利息;利息=本金利率(6)比率問題:部分=全體比率比率部分部分全體;全體比率(7)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(8)等積變形問題:長方體的體積=長寬高;圓柱的體積=底面積高;鍛造前的體積=鍛造后的體積
(9)周長、面積、體積問題:C圓=2πR,S圓=πR,C長方形=2(a+b),S長方形=ab,C正方形=4a,
21222322
S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V圓錐=πRh.
310.列一元一次方程解應(yīng)用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.
提分?jǐn)?shù)學(xué)
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).
第四章走進(jìn)圖形世界
1、幾何圖形:
現(xiàn)實(shí)生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形
從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。長方體、正方體、球、圓柱、
圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。
平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。長方形、正方形、三角形、圓
等都是平面圖形。
立體圖形與平面圖形:許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_,就可以展開成平面圖形。
2、點(diǎn)、線、面、體(1)幾何圖形的組成
點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。
包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線;線和線相交的地方是點(diǎn);幾何圖形都是由點(diǎn)、線、面、體組成的,點(diǎn)是構(gòu)成圖形的基本元素。
(2)點(diǎn)動成線,線動成面,面動成體。
3、生活中的立體圖形圓柱柱體
棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、
生活中的立體圖形球體
(按名稱分)圓錐
椎體
提分?jǐn)?shù)學(xué)
棱錐
4、棱柱及其有關(guān)概念:
棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。
n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點(diǎn)。
棱柱的所有側(cè)棱長都相等,棱柱的上下兩個底面是相同的多邊形,直棱柱的側(cè)面是長方形。棱柱的側(cè)面有可能是長方形,也有可能是平行四邊形。
5、正方體的平面展開圖:11種
6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖
物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖。俯視圖:從上面看到的圖,叫做俯視圖。
平面圖形的認(rèn)識
線段,射線,直線名稱線段射線直線
-16-
不同點(diǎn)延伸性不能延伸只能向一方延伸可向兩方無限延伸端點(diǎn)數(shù)21無聯(lián)系線段向一方延長就成射線,向兩方延長就成直線共同點(diǎn)都是直的線提分?jǐn)?shù)學(xué)
點(diǎn)、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點(diǎn)可以用一個大寫字母表示,如點(diǎn)A
一條直線可以用一個小寫字母表示或用直線上兩個點(diǎn)的大寫字母表示,如直線l,或者直線AB
一條射線可以用一個小寫字母表示或用端點(diǎn)和射線上另一點(diǎn)來表示(端點(diǎn)字母寫在前面),如射線l,射線AB一條線段可以用一個小寫字母表示或用它的端點(diǎn)的兩個大寫字母來表示,如線段l,線段AB
點(diǎn)和直線的位置關(guān)系有兩種:
①點(diǎn)在直線上,或者說直線經(jīng)過這個點(diǎn)。②點(diǎn)在直線外,或者說直線不經(jīng)過這個點(diǎn)。
線段的性質(zhì)
(1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。
(2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。(3)線段的中點(diǎn)到兩端點(diǎn)的距離相等。
(4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。(5)線段的比較:1.目測法2.疊合法3.度量法線段的中點(diǎn):
點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。
M是線段AB的中點(diǎn)
A直線的性質(zhì)
MBAM=BM=
1AB(或者AB=2AM=2BM)2(1)直線公理:經(jīng)過兩個點(diǎn)有且只有一條直線。(2)過一點(diǎn)的直線有無數(shù)條。
(3)直線是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。(4)直線上有無窮多個點(diǎn)。
(5)兩條不同的直線至多有一個公共點(diǎn)。
經(jīng)過兩點(diǎn)有一條直線,并且只有一條直線;兩點(diǎn)確定一條直線;點(diǎn)C線段AB分成相等的兩條線段AM與MB,點(diǎn)M叫做線段AB的中點(diǎn)。類似的還有線段的三等分點(diǎn)、四等分點(diǎn)等。
提分?jǐn)?shù)學(xué)
直線桑一點(diǎn)和它一旁的部分叫做射線;兩點(diǎn)的所有連線中,線段最短。簡單說成:兩點(diǎn)之間,線段最短。
角:有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個角的頂點(diǎn),這兩條射線叫做這個角的邊。或:角也可以看成是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。
平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。
角的表示:
①用數(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨(dú)的一個角,如∠α,∠β,∠γ,∠θ等。
③用一個大寫英文字母表示一個獨(dú)立(在一個頂點(diǎn)處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。
注意:用三個大寫英文字母表示角時,一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。
用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量
角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”;度、分、秒是常用的角的度量單位。
把一個周角360等分,每一份就是一度的角,記作1°;
把1°的角60等分,每一份叫做1分的角,1分記作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒記作“1””;角的性質(zhì)
(1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運(yùn)算。角的平分線
從一個角的頂點(diǎn)引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。類似的,
1°=60’,1’=60”
還有叫的三等分線。
AOB平分∠AOC∠AOB=∠BOC=
1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)
-18-
C提分?jǐn)?shù)學(xué)
余角和補(bǔ)角
①如果兩個角的和是一個直角等于90°,這兩個角叫做互為余角,簡稱互余,其中一個角是另一個角的
余角。用數(shù)學(xué)語言表示為如果∠α+∠β=90°,那么∠α與∠β互余;反過來,如果∠α與∠β互余,那么∠α+∠β=90°
②如果兩個角的和是一個平角等于180°,這兩個角叫做互為補(bǔ)角,簡稱互補(bǔ),其中一個角是另一個角的補(bǔ)角。用數(shù)學(xué)語言表示為如果∠α+∠β=180°,那么∠α與∠β互補(bǔ);反過來如果∠α與∠β互補(bǔ),那么∠α+∠β=180°
③同角(或等角)的余角相等;同角(或等角)的補(bǔ)角相等。
對頂角
①一對角,如果它們的頂點(diǎn)重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一
個角叫做另一個角的對頂角。
注意:對頂角是成對出現(xiàn)的,它們有公共的頂點(diǎn);只有兩條直線相交時才能形成對頂角。
②對頂角的性質(zhì):對頂角相等
如圖,∠1和∠4是對頂角,∠2和∠3是對頂角
2431∠1=∠4,∠2=∠3
平行線:
在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。
注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。
(2)當(dāng)遇到線段、射線平行時,指的是線段、射線所在的直線平行。平行線公理及其推論
平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補(bǔ)充平行線的判定方法:
提分?jǐn)?shù)學(xué)
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。垂直:
兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點(diǎn)叫做垂足。
直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。
垂線的性質(zhì):
性質(zhì)1:平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短。簡稱:垂線段最短。點(diǎn)到直線的距離:過A點(diǎn)作l的垂線,垂足為B點(diǎn),線段AB的長度叫做點(diǎn)A到直線l的距離。同一平面內(nèi),兩條直線的位置關(guān)系:相交或平行。
圖形知識結(jié)構(gòu)圖:
提分?jǐn)?shù)學(xué)
從不同方向看立體圖形
立體圖形展開立體圖形
幾何圖形平面圖形角的度量角角的大小比較余角和補(bǔ)角角的平分線同角(等角)的余角相等;同角(等角)的補(bǔ)角相等等角的余角相等
直線、射線、線段
平面圖形平面圖形
友情提示:本文中關(guān)于《七年級上冊數(shù)學(xué)知識點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,七年級上冊數(shù)學(xué)知識點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。