【人教版】初中數(shù)學(xué)九年級知識點總結(jié):23旋轉(zhuǎn)
【人教版】初中數(shù)學(xué)九年級知識點總結(jié):23旋轉(zhuǎn)
【編者按】學(xué)生通過平移、平面直角坐標系,軸對稱、反比例函數(shù)、四邊形等知識的學(xué)習(xí),初步積累了一定的圖形變換數(shù)學(xué)活動經(jīng)驗.本章在此基礎(chǔ)上,讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數(shù)學(xué)的快樂,激發(fā)對學(xué)習(xí)學(xué)習(xí)。一、目標與要求
1.了解圖形的旋轉(zhuǎn)的有關(guān)概念并理解它的基本性質(zhì)。
2.了解旋轉(zhuǎn)及其旋轉(zhuǎn)中心和旋轉(zhuǎn)角的概念,了解旋轉(zhuǎn)對應(yīng)點的概念及其應(yīng)用它們解決一些實際問題。
3.理解對應(yīng)點到旋轉(zhuǎn)中心的距離相等;理解對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。4.理解旋轉(zhuǎn)前、后的圖形全等,掌握以上三個圖形的旋轉(zhuǎn)的基本性質(zhì)的運用。5.了解中心對稱的概念并理解它的基本性質(zhì)。
6.運用旋轉(zhuǎn)知識作圖,旋轉(zhuǎn)角度變化,設(shè)計出不同的美麗圖案,并運用它解決一些實際問題。7.了解中心對稱圖形的概念;掌握關(guān)于原點對稱的兩點的關(guān)系并應(yīng)用;再通過幾何操作題的練習(xí),掌握課題學(xué)習(xí)中圖案設(shè)計的方法。二、知識框架
三、重點
1.圖形旋轉(zhuǎn)的基本性質(zhì)2.中心對稱的基本性質(zhì)
3.兩個點關(guān)于原點對稱時,它們坐標間的關(guān)系4.圖形的旋轉(zhuǎn)的基本性質(zhì)及其應(yīng)用
5.用旋轉(zhuǎn)的有關(guān)知識畫圖
6.利用中心對稱、對稱中心、關(guān)于中心對稱點的概念解決一些問題四、難點
1.圖形旋轉(zhuǎn)的基本性質(zhì)的歸納與運用2.中心對稱的基本性質(zhì)的歸納與運用
3.運用操作實驗幾何得出圖形的旋轉(zhuǎn)的三條基本性質(zhì)4.根據(jù)需要設(shè)計美麗圖案5.從一般旋轉(zhuǎn)中導(dǎo)入中心對稱五、知識點、概念總結(jié)
1.旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度,這樣的運動叫做圖形的旋轉(zhuǎn)。這個定點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。
圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞著某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。如下圖所示:
2.旋轉(zhuǎn)對稱中心:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。3.旋轉(zhuǎn)的性質(zhì)
(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。4.中心對稱圖形與中心對稱:
中心對稱圖形:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。
中心對稱:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。
5.中心對稱和中心對稱圖形的區(qū)別
區(qū)別:中心對稱是指兩個全等圖形之間的相互位置關(guān)系,這兩個圖形關(guān)于一點對稱,這個點是對稱中心,兩個圖形關(guān)于點的對稱也叫做中心對稱.成中心對稱的兩個圖形中,其中一個上所有點關(guān)于對稱中心的對稱點都在另一個圖形上,反之,另一個圖形上所有點的對稱點,又都在這個圖形上;而中心對稱圖形是指一個圖形本身成中心對稱.中心對稱圖形上所有點關(guān)于對稱中心的對稱點都在這個圖形本身上。
如果將中心對稱的兩個圖形看成一個整體(一個圖形),那么這個圖形就是中心對稱圖形;一個中心對稱圖形,如果把對稱的部分看成是兩個圖形,那么它們又是關(guān)于中心對稱。
6.中心對稱圖形的判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
7.中心對稱的性質(zhì):
關(guān)于中心對稱的兩個圖形是全等形。
關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或者在同一直線上)且相等。8.坐標系中對稱點的特征(1)關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標的符號相反,即點P(x,y)關(guān)于原點的對稱點為P’
(-x,-y)
(2)關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關(guān)于x軸的對稱點為P’(x,-y)(3)關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關(guān)于y軸的對稱點為P’(-x,y)
9.圖案設(shè)計:利用平移、軸對稱和旋轉(zhuǎn)的這些圖形變換中的一種或組合進行圖案設(shè)計,設(shè)計出稱心如意的圖案.
(參考教材:初中數(shù)學(xué)九年級人教版)
擴展閱讀:【人教版】初中數(shù)學(xué)九年級知識點總結(jié):23旋轉(zhuǎn)
【人教版】初中數(shù)學(xué)九年級知識點總結(jié):23旋轉(zhuǎn)
【編者按】本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數(shù)學(xué)的快樂,激發(fā)對學(xué)習(xí)學(xué)習(xí)。一.知識框架
二.知識概念
1.旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度,這樣的運動叫做圖形的旋轉(zhuǎn)。這個定點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞著某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的大小和形狀沒有改變。)
2.旋轉(zhuǎn)對稱中心:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。
3.中心對稱和中心對稱圖形是兩個不同而又緊密聯(lián)系的概念.區(qū)別是:中心對稱是指兩個全等圖形之間的相互位置關(guān)系,這兩個圖形關(guān)于一點對稱,這個點是對稱中心,兩個圖形關(guān)于點的對稱也叫做中心對稱.成中心對稱的兩個圖形中,其中一個上所有點關(guān)于對稱中心的對稱點都在另一個圖形上,反之,另一個圖形上所有點的對稱點,又都在這個圖形上;而中心對稱圖形是指一個圖形本身成中心對稱.中心對稱圖形上所有點關(guān)于對稱中心的對稱點都在這個圖形本身上.如果將中心對稱的兩個圖形看成一個整體(一個圖形),那么這個圖形就是中心對稱圖形;一個中心對稱圖形,如果把對稱的部分看成是兩個圖形,那么它們又是關(guān)于中心對稱.
4.中心對稱圖形與中心對稱:
中心對稱圖形:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。
中心對稱:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。
5.把一個圖形繞著某一點旋轉(zhuǎn)180°,如果它能與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱(centralsymmetry),這個點叫做對稱中心,這兩個圖形的對應(yīng)點叫做關(guān)于中心的對稱點。6.中心對稱的性質(zhì):
關(guān)于中心對稱的兩個圖形是全等形。
關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或者在同一直線上)且相等。(參考教材:初中數(shù)學(xué)九年級人教版)
友情提示:本文中關(guān)于《【人教版】初中數(shù)學(xué)九年級知識點總結(jié):23旋轉(zhuǎn)》給出的范例僅供您參考拓展思維使用,【人教版】初中數(shù)學(xué)九年級知識點總結(jié):23旋轉(zhuǎn):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。