北師大版《數(shù)學》(七年級下冊)知識點總結
北師大版《數(shù)學》(七年級下冊)知識點總結
第一章整式的運算
一、單項式、單項式的次數(shù):
只含有數(shù)字與字母的積的代數(shù)式叫做單項式。單獨的一個數(shù)或一個字母也是單項式。一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。二、多項式
1、多項式、多項式的次數(shù)、項幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。三、整式:單項式和多項式統(tǒng)稱為整式。四、整式的加減法:
整式加減法的一般步驟:(1)去括號;(2)合并同類項。五、冪的運算性質(zhì):
1、同底數(shù)冪的乘法:amanamn(m,n都是正整數(shù))
n2、冪的乘方:(am)amn(m,n都是正整數(shù))
3、積的乘方:(ab)nanbn(n都是正整數(shù))
4、同底數(shù)冪的除法:amanamn(m,n都是正整數(shù),a0)六、零指數(shù)冪和負整數(shù)指數(shù)冪:1、零指數(shù)冪:a1(a0);2、負整數(shù)指數(shù)冪:ap01(a0,p是正整數(shù))ap七、整式的乘除法:
1、單項式乘以單項式:
法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余的字母連同它的指數(shù)不變,作為積的因式。
2、單項式乘以多項式:
法則:單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
3、多項式乘以多項式:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
4、單項式除以單項式:
單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式。
5、多項式除以單項式:
多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。八、整式乘法公式:
1、平方差公式:(ab)(ab)a2b22、完全平方公式:(ab)2a22abb2(ab)2a22abb2
第二章平行線與相交線
一、余角和補角:
1、余角:
定義:如果兩個角的和是直角,那么稱這兩個角互為余角。性質(zhì):同角或等角的余角相等。2、補角:
定義:如果兩個角的和是平角,那么稱這兩個角互為補角。性質(zhì):同角或等角的補角相等。二、對頂角:
我們把兩條直線相交所構成的四個角中,有公共頂點且角的兩邊互為反向延長線的兩個角叫做對頂角。
對頂角的性質(zhì):對頂角相等。三、同位角、內(nèi)錯角、同旁內(nèi)角:
直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,并且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,并且在EF的異側,像這樣位置的兩個角叫做內(nèi)錯角;∠3與∠6在直線AB,CD之間,并側在EF的同側,像這樣位置的兩個角叫做同旁內(nèi)角。
四、平行線的判定:
1、兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位角相等,兩直線平行。
2、兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。簡稱:內(nèi)錯角相等,兩直線平行。
3、兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么兩直線平行。簡稱:同旁內(nèi)角互補,兩直線平行。
補充平行線的判定方法:
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。五、平行線的性質(zhì):
(1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯角相等。(3)兩直線平行,同旁內(nèi)角互補。六、尺規(guī)作圖:
1、作一條線段等于已知線段。2、作一個角等于已知角。
第三章生活中的數(shù)據(jù)
一、科學記數(shù)法:
一般地,一個絕對值較小的數(shù)可以表示成a10的形式,其中1a10,n是負整數(shù)。
二、近似數(shù)和有效數(shù)字:
1、近似數(shù):
利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。
2、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個近似數(shù)的有效數(shù)字。三、形象統(tǒng)計圖:
n第四章概率
一、事件發(fā)生的可能性;
人們通常用1(或100)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。
二、游戲是否公平:
游戲對雙方公平是指雙方獲勝的可能性相同。三、摸到紅球的概率:1、概率的意義
P(摸到紅球)=
摸到紅球可能出現(xiàn)的結果數(shù)
摸出一球可能出現(xiàn)的結果數(shù)2、確定事件和不確定事件的概率:
(1)必然事件發(fā)生的概率為1記作P(必然事件)=1(2)不可能事件發(fā)生的概率為0,P(不可能事件)=0(3)如果A為不確定事件,那么0
一、三角形及其有關概念1、三角形:
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡稱三角形的角。
2、三角形的表示:
三角形用符號“”表示,頂點是A、B、C的三角形記作“ABC”,讀作“三角形ABC”。
3、三角形的三邊關系:
(1)三角形的兩邊之和大于第三邊。(2)三角形的兩邊之差小于第三邊。(3)作用:
①判斷三條已知線段能否組成三角形②當已知兩邊時,可確定第三邊的范圍。③證明線段不等關系。4、三角形的內(nèi)角的關系:
(1)三角形三個內(nèi)角和等于180°。(2)直角三角形的兩個銳角互余。5、三角形的穩(wěn)定性:
三角形的形狀是固定的,三角形的這個性質(zhì)叫做三角形的穩(wěn)定性。6、三角形的分類:(1)三角形按邊分類:不等邊三角形
三角形底和腰不相等的等腰三角形等腰三角形
等邊三角形(2)三角形按角分類:
直角三角形(有一個角為直角的三角形)
三角形銳角三角形(三個角都是銳角的三角形)斜三角形
鈍角三角形(有一個角為鈍角的三角形)
把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。
7、三角形的三種重要線段:(1)三角形的角平分線:
定義:在三角形中,一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
性質(zhì):三角形的三條角平分線交于一點。交點在三角形的內(nèi)部。(2)三角形的中線:
定義:在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。性質(zhì):三角形的三條中線交于一點,交點在三角形的內(nèi)部。(3)三角形的高線:
定義:從三角形一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
性質(zhì):三角形的三條高所在的直線交于一點。銳角三角形的三條高線的交點在它的內(nèi)部;直角三角形的三條高線的交點是它的斜邊的中點;鈍角三角形的三條高所在的直線的交點在它的外部;
8、三角形的面積:
三角形的面積=
1×底×高2二、全等圖形:
定義:能夠完全重合的兩個圖形叫做全等圖形。性質(zhì):全等圖形的形狀和大小都相同。三、全等三角形
1、全等三角形及有關概念:
能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
2、全等三角形的表示:
全等用符號“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。
注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。3、全等三角形的性質(zhì):全等三角形的對應邊相等,對應角相等。4、三角形全等的判定:
(1)邊邊邊:有三邊對應相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。(2)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)
(3)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“角角邊”或“AAS”)
(4)邊角邊:兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)
直角三角形全等的判定:
對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)
第六章變量之間的關系
1、變量、自變量、因變量:2、函數(shù)的三種表示法:
(1)關系式法(2)列表法(3)圖像法
第七章生活中的軸對稱
一、軸對稱
1、軸對稱圖形:
如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、軸對稱:
對于兩個圖形,如果沿一條直線對折后,它們能夠完全重合,那么稱這兩個圖形成軸
對稱,這條直線就是對稱軸。
3、性質(zhì):
(1)對應點所連的線段被對稱軸垂直平分。(2)對應線段相等,對應角相等。二、角平分線的性質(zhì):
角平分線上的點到這個角的兩邊的距離相等。三、線段的垂直平分線(簡稱中垂線):
定義:垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。性質(zhì):線段垂直平分線上的點到這條線段兩個端點的距離相等。四、等腰三角形
1、等腰三角形:有兩條邊相等的三角形叫做等腰三角形。2、等腰三角形的性質(zhì):
(1)等腰三角形的兩個底角相等
(2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),(3)等腰三角形是軸對稱圖形,等腰三角形頂角的平分線、底邊上的中線、底邊上的高它們所在的直線都是等腰三角形的對稱軸。
3、等腰三角形的判定:
(1)有兩條邊相等的三角形是等腰三角形。
(2)如果一個三角形有兩個角相等,那么它們所對的邊也相等五、等邊三角形:
1、等邊三角形:三邊都相等的三角形叫做等邊三角形。2、等邊三角形的性質(zhì):
(1)具有等腰三角形的所有性質(zhì)。
(2)等邊三角形的各個角都相等,并且每個角都等于60°。3、等邊三角形的判定
(1)三邊都相等的三角形是等邊三角形。(2):三個角都相等的三角形是等邊三角形(3):有一個角是60°的等腰三角形是等邊三角形。
擴展閱讀:北師大版《數(shù)學》(七年級下冊)知識點總結
北師大版《數(shù)學》(七年級下冊)知識點總結
第一章整式的運算
一、單項式、單項式的次數(shù):
只含有數(shù)字與字母的積的代數(shù)式叫做單項式。單獨的一個數(shù)或一個字母也是單項式。一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。二、多項式
1、多項式、多項式的次數(shù)、項幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。三、整式:單項式和多項式統(tǒng)稱為整式。四、整式的加減法:
整式加減法的一般步驟:(1)去括號;(2)合并同類項。五、冪的運算性質(zhì):
1、同底數(shù)冪的乘法:aaamnmn(m,n都是正整數(shù))
(a)a2、冪的乘方:
nnmnmn(m,n都是正整數(shù))
3、積的乘方:(ab)ab(n都是正整數(shù))4、同底數(shù)冪的除法:aaa六、零指數(shù)冪和負整數(shù)指數(shù)冪:1、零指數(shù)冪:a1(a0);2、負整數(shù)指數(shù)冪:ap0mnmnn(m,n都是正整數(shù),a0)
1(a0,p是正整數(shù))ap七、整式的乘除法:
1、單項式乘以單項式:
法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余的字母連同它的指數(shù)不變,作為積的因式。
2、單項式乘以多項式:
法則:單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
3、多項式乘以多項式:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
4、單項式除以單項式:
單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式。
5、多項式除以單項式:
多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。八、整式乘法公式:
1、平方差公式:(ab)(ab)ab2、完全平方公式:(ab)a2abb(ab)a2abb
22222222第二章平行線與相交線
一、余角和補角:
1、余角:
定義:如果兩個角的和是直角,那么稱這兩個角互為余角。性質(zhì):同角或等角的余角相等。2、補角:
定義:如果兩個角的和是平角,那么稱這兩個角互為補角。性質(zhì):同角或等角的補角相等。二、對頂角:
我們把兩條直線相交所構成的四個角中,有公共頂點且角的兩邊互為反向延長線的兩個角叫做對頂角。
對頂角的性質(zhì):對頂角相等。三、同位角、內(nèi)錯角、同旁內(nèi)角:
直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,并且在EF的同側,像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,并且在EF的異側,像這樣位置的兩個角叫做內(nèi)錯角;∠3與∠6在直線AB,CD之間,并側在EF的同側,像這樣位置的兩個角叫做同旁內(nèi)角。
四、平行線的判定:
1、兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位角相等,兩直線平行。
2、兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。簡稱:內(nèi)錯角相等,兩直線平行。
3、兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么兩直線平行。簡稱:同旁內(nèi)角互補,兩直線平行。
補充平行線的判定方法:
(1)平行于同一條直線的兩直線平行。
(2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。五、平行線的性質(zhì):
(1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯角相等。(3)兩直線平行,同旁內(nèi)角互補。六、尺規(guī)作圖:
1、作一條線段等于已知線段。2、作一個角等于已知角。
第三章生活中的數(shù)據(jù)
一、科學記數(shù)法:
一般地,一個絕對值較小的數(shù)可以表示成a其中1a10,n是負整數(shù)。10n的形式,二、近似數(shù)和有效數(shù)字:1、近似數(shù):
利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。
2、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個近似數(shù)的有效數(shù)字。三、形象統(tǒng)計圖:
第四章概率
一、事件發(fā)生的可能性;
人們通常用1(或100%)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。
二、游戲是否公平:
游戲對雙方公平是指雙方獲勝的可能性相同。三、摸到紅球的概率:1、概率的意義
P(摸到紅球)=
摸到紅球可能出現(xiàn)的結果數(shù)
所有可能出現(xiàn)的結果數(shù)2、確定事件和不確定事件的概率:
(1)必然事件發(fā)生的概率為1記作P(必然事件)=1(2)不可能事件發(fā)生的概率為0,P(不可能事件)=0(3)如果A為不確定事件,那么0
一、三角形及其有關概念1、三角形:
由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡稱三角形的角。
2、三角形的表示:
三角形用符號“△”表示,頂點是A、B、C的三角形記作“△ABC”,讀作“三角形ABC”。
3、三角形的三邊關系:
(1)三角形的任意兩邊之和大于第三邊。(2)三角形的任意兩邊之差小于第三邊。(3)作用:
①判斷三條已知線段能否組成三角形②當已知兩邊時,可確定第三邊的范圍。③證明線段不等關系。4、三角形的內(nèi)角的關系:
(1)三角形三個內(nèi)角和等于180°。(2)直角三角形的兩個銳角互余。5、三角形的穩(wěn)定性:
三角形的形狀是固定的,三角形的這個性質(zhì)叫做三角形的穩(wěn)定性。6、三角形的分類:(1)三角形按邊分類:不等邊三角形
三角形底和腰不相等的等腰三角形等腰三角形
等邊三角形(2)三角形按角分類:
直角三角形(有一個角為直角的三角形)
三角形銳角三角形(三個角都是銳角的三角形)斜三角形
鈍角三角形(有一個角為鈍角的三角形)
把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。
7、三角形的三種重要線段:(1)三角形的角平分線:
定義:在三角形中,一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。
性質(zhì):三角形的三條角平分線交于一點。交點在三角形的內(nèi)部。(2)三角形的中線:
定義:在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。性質(zhì):三角形的三條中線交于一點,交點在三角形的內(nèi)部。(3)三角形的高線:
定義:從三角形一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。
性質(zhì):三角形的三條高所在的直線交于一點。銳角三角形的三條高線的交點在它的內(nèi)部;直角三角形的三條高線的交點在它的直角頂點;鈍角三角形的三條高所在的直線的交點在它的外部;
8、三角形的面積:
三角形的面積=
1×底×高2二、全等圖形:
定義:能夠完全重合的兩個圖形叫做全等圖形。性質(zhì):全等圖形的形狀和大小都相同。三、全等三角形
1、全等三角形及有關概念:
能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
2、全等三角形的表示:
全等用符號“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。
注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。3、全等三角形的性質(zhì):全等三角形的對應邊相等,對應角相等。4、三角形全等的判定:
(1)邊邊邊:有三邊對應相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。(2)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)
(3)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“角角邊”或“AAS”)
(4)邊角邊:兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)
直角三角形全等的判定:
對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)
第六章變量之間的關系
1、變量、自變量、因變量:2、函數(shù)的三種表示法:
(1)關系式法(2)列表法(3)圖像法
第七章生活中的軸對稱
一、軸對稱
1、軸對稱圖形:
如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、軸對稱:
對于兩個圖形,如果沿一條直線對折后,它們能夠完全重合,那么稱這兩個圖形成軸
對稱,這條直線就是對稱軸。
3、性質(zhì):
(1)對應點所連的線段被對稱軸垂直平分。(2)對應線段相等,對應角相等。二、角平分線的性質(zhì):
角平分線上的點到這個角的兩邊的距離相等。三、線段的垂直平分線(簡稱中垂線):
定義:垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。性質(zhì):線段垂直平分線上的點到這條線段兩個端點的距離相等。四、等腰三角形
1、等腰三角形:有兩條邊相等的三角形叫做等腰三角形。2、等腰三角形的性質(zhì):
(1)等腰三角形的兩個底角相等
(2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),(3)等腰三角形是軸對稱圖形,等腰三角形頂角的平分線、底邊上的中線、底邊上的高它們所在的直線都是等腰三角形的對稱軸。
3、等腰三角形的判定:
(1)有兩條邊相等的三角形是等腰三角形。
(2)如果一個三角形有兩個角相等,那么它們所對的邊也相等五、等邊三角形:
1、等邊三角形:三邊都相等的三角形叫做等邊三角形。2、等邊三角形的性質(zhì):
(1)具有等腰三角形的所有性質(zhì)。
(2)等邊三角形的各個角都相等,并且每個角都等于60°。3、等邊三角形的判定
(1)三邊都相等的三角形是等邊三角形。(2):三個角都相等的三角形是等邊三角形(3):有一個角是60°的等腰三角形是等邊三角形。
友情提示:本文中關于《北師大版《數(shù)學》(七年級下冊)知識點總結》給出的范例僅供您參考拓展思維使用,北師大版《數(shù)學》(七年級下冊)知識點總結:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。