高中數(shù)學必修2知識點總結:第二章_直線與平面的位置關系
高中數(shù)學必修2知識點總結
第二章直線與平面的位置關系
2.1空間點、直線、平面之間的位置關系
2.1.1
1平面含義:平面是無限延展的2平面的畫法及表示
(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成45,且橫邊畫成鄰邊的2倍長(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。3三個公理:
(1)公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內符號表示為
A∈L
B∈L=>LαA∈αB∈α
公理1作用:判斷直線是否在平面內
(2)公理2:過不在一條直線上的三點,有且只有一個平面。符號表示為:A、B、C三點不共線=>有且只有一個平面α,使A∈α、B∈α、C∈α。
公理2作用:確定一個平面的依據(jù)。
(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。符號表示為:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定兩個平面是否相交的依據(jù)
0DαA
BCAα
LαC
ABβLPα2.1.2空間中直線與直線之間的位置關系
1空間的兩條直線有如下三種關系:
相交直線:同一平面內,有且只有一個公共點;
共面直線
平行直線:同一平面內,沒有公共點;
異面直線:不同在任何一個平面內,沒有公共點。2公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設a、b、c是三條直線
a∥bc∥b
強調:公理4實質上是說平行具有傳遞性,在平面、空間這個性質都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。
3等角定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補4注意點:
①a"與b"所成的角的大小只由a、b的相互位置來確定,與O的選擇無關,為簡便,點O一般取在兩直線中的一條上;
②兩條異面直線所成的角θ∈(0,);=>a∥c
③當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;
2
⑤計算中,通常把兩條異面直線所成的角轉化為兩條相交直線所成的角。
2.1.32.1.4空間中直線與平面、平面與平面之間的位置關系
1、直線與平面有三種位置關系:
(1)直線在平面內有無數(shù)個公共點(2)直線與平面相交有且只有一個公共點(3)直線在平面平行沒有公共點
指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示
aαa∩α=Aa∥α
2.2.直線、平面平行的判定及其性質2.2.1直線與平面平行的判定
1、直線與平面平行的判定定理:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號表示:
aα
bβ=>a∥αa∥b
2.2.2平面與平面平行的判定
1、兩個平面平行的判定定理:一個平面內的兩條交直線與另一個平面平行,則這兩個平面平行。
符號表示:
aβbβ
a∩b=Pβ∥αa∥αb∥α
2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;
(3)垂直于同一條直線的兩個平面平行。
2.2.32.2.4直線與平面、平面與平面平行的性質
1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號表示:
a∥α
aβa∥bα∩β=b
作用:利用該定理可解決直線間的平行問題。
2、定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。
符號表示:
α∥β
α∩γ=aa∥bβ∩γ=b
作用:可以由平面與平面平行得出直線與直線平行2.3直線、平面垂直的判定及其性質
2.3.1直線與平面垂直的判定
1、定義
如果直線L與平面α內的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖,直線與平面垂直時,它們唯一公共點P叫做垂足。
Lpα2、判定定理:一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直。
注意點:a)定理中的“兩條相交直線”這一條件不可忽視;
b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形
A梭lβ
Bα2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。2.3.32.3.4直線與平面、平面與平面垂直的性質1、定理:垂直于同一個平面的兩條直線平行。
2性質定理:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直。
本章知識結構框圖
平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關系
直線與平面的位置關系平面與平面的位置關系
擴展閱讀:高中數(shù)學必修2知識點總結:第二章 直線與平面的位置關系
歸海木心QQ:634102564
高中數(shù)學必修2知識點總結
第二章直線與平面的位置關系
2.1空間點、直線、平面之間的位置關系
2.1.1
1平面含義:平面是無限延展的2平面的畫法及表示
(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)
(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。3三個公理:
(1)公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內符號表示為
A∈L
B∈L=>LαA∈αB∈α
公理1作用:判斷直線是否在平面內
(2)公理2:過不在一條直線上的三點,有且只有一個平面。符號表示為:A、B、C三點不共線=>有且只有一個平面α,使A∈α、B∈α、C∈α。
公理2作用:確定一個平面的依據(jù)。
(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。符號表示為:P∈α∩β=>α∩β=L,且P∈L公理3作用:判定兩個平面是否相交的依據(jù)
DαA
BCAα
LαC
ABβLPα2.1.2空間中直線與直線之間的位置關系
1空間的兩條直線有如下三種關系:
相交直線:同一平面內,有且只有一個公共點;
共面直線
平行直線:同一平面內,沒有公共點;
異面直線:不同在任何一個平面內,沒有公共點。2公理4:平行于同一條直線的兩條直線互相平行。符號表示為:設a、b、c是三條直線
a∥bc∥b
強調:公理4實質上是說平行具有傳遞性,在平面、空間這個性質都適用。公理4作用:判斷空間兩條直線平行的依據(jù)。
3等角定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補4注意點:
①a"與b"所成的角的大小只由a、b的相互位置來確定,與O的選擇無關,為簡便,點O一般取在兩直線中的一條上;②兩條異面直線所成的角θ∈(0,);
=>a∥c
2③當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;
⑤計算中,通常把兩條異面直線所成的角轉化為兩條相交直線所成的角。
歸海木心QQ:6341025歸海木心QQ:634102564
2.1.32.1.4空間中直線與平面、平面與平面之間的位置關系
1、直線與平面有三種位置關系:
(1)直線在平面內有無數(shù)個公共點(2)直線與平面相交有且只有一個公共點(3)直線在平面平行沒有公共點
指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示
aαa∩α=Aa∥α
2.2.直線、平面平行的判定及其性質2.2.1直線與平面平行的判定
1、直線與平面平行的判定定理:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。簡記為:線線平行,則線面平行。符號表示:
aα
bβ=>a∥αa∥b
2.2.2平面與平面平行的判定
1、兩個平面平行的判定定理:一個平面內的兩條交直線與另一個平面平行,則這兩個平面平行。
符號表示:
aβbβ
a∩b=Pβ∥αa∥αb∥α
2、判斷兩平面平行的方法有三種:(1)用定義;(2)判定定理;
(3)垂直于同一條直線的兩個平面平行。
2.2.32.2.4直線與平面、平面與平面平行的性質
1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。簡記為:線面平行則線線平行。符號表示:
a∥α
aβa∥b
α∩β=b
作用:利用該定理可解決直線間的平行問題。
2、定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。符號表示:
歸海木心QQ:6341025歸海木心QQ:634102564
α∥β
α∩γ=aa∥bβ∩γ=b
作用:可以由平面與平面平行得出直線與直線平行2.3直線、平面垂直的判定及其性質
2.3.1直線與平面垂直的判定
1、定義
如果直線L與平面α內的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。如圖,直線與平面垂直時,它們唯一公共點P叫做垂足。
Lpα2、判定定理:一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直。
注意點:a)定理中的“兩條相交直線”這一條件不可忽視;
b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉化的數(shù)學思想。
2.3.2平面與平面垂直的判定
1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形
A梭lβB
α2、二面角的記法:二面角α-l-β或α-AB-β
3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。2.3.32.3.4直線與平面、平面與平面垂直的性質1、定理:垂直于同一個平面的兩條直線平行。
2性質定理:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直。
本章知識結構框圖
平面(公理1、公理2、公理3、公理4)空間直線、平面的位置關系歸海木心QQ:6341025歸海木心QQ:634102564
歸海木心直線與平面的位置關系平面與平面的位置關系QQ:634102564
友情提示:本文中關于《高中數(shù)學必修2知識點總結:第二章_直線與平面的位置關系》給出的范例僅供您參考拓展思維使用,高中數(shù)學必修2知識點總結:第二章_直線與平面的位置關系:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯(lián)系我們及時刪除。