《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,大約成書于公元前 300 年左右,是一部劃時(shí)代的著作,下面為大家分享了幾何原本讀后感,歡迎借鑒!
幾何原本讀后感1讀《幾何原本》的作者歐幾里得能夠代表整個(gè)古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)。
《幾何原本》這本數(shù)學(xué)著作,以幾個(gè)顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡(jiǎn)單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。
就我目前拜訪的幾個(gè)命題來看,歐幾里得證明關(guān)于線段“一樣長(zhǎng)”的題,最常用、也是最基本的,便是畫圓:因?yàn),一個(gè)圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。
不過,我要著重講的,是他的哲學(xué)。
書中有這樣幾個(gè)命題:如,“等腰三角形的兩底角相等,將腰延長(zhǎng),與底邊形成的兩個(gè)補(bǔ)角亦相等”,再如,“如果在一個(gè)三角形里,有兩個(gè)角相等,那么也有兩條邊相等”,這些命題,我在讀時(shí),內(nèi)心一直承受著幾何外的震撼。
我們七年級(jí)已經(jīng)學(xué)了幾何。想想那時(shí)做這類證明題,需要證明一個(gè)三角形中的兩個(gè)角相等的時(shí)候,我們總是會(huì)這么寫:“因?yàn)樗且粋(gè)等腰三角形,所以兩底角相等”——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個(gè)底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個(gè)底角為什么相等”。想想看吧,一個(gè)思想習(xí)以為常,一個(gè)思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?
大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對(duì)新奇的事物感興趣,同樣指對(duì)平常的事物感興趣。比如說,許多人會(huì)問“宇航員在空中為什么會(huì)飄起來”,但也許不會(huì)問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫?huì)飄起來”;許多人會(huì)問“吃什么東西能減肥”,但也許不會(huì)問“羊?yàn)槭裁闯圆荻怀匀狻薄?/p>
我們對(duì)身邊的事物太習(xí)以為常了,以致不會(huì)對(duì)許多“平常”的事物感興趣,進(jìn)而去琢磨透它。牛頓為什么會(huì)發(fā)現(xiàn)萬有引力?很大一部分原因,就在于他有好奇心。
如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯(cuò)特錯(cuò)了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。
哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!
幾何原本讀后感2《幾何原本》作為數(shù)學(xué)的圣經(jīng),第一部系統(tǒng)的數(shù)學(xué)著作,牛頓,愛因斯坦,就是以這種形式寫的《自然哲學(xué)的數(shù)學(xué)原理》和《相對(duì)論》,斯賓諾莎寫出哲學(xué)著作《倫理學(xué)》,倫理學(xué)可以作為哲學(xué)與社會(huì)科學(xué)以及心理學(xué)的接口,都是推理性很強(qiáng)。
幾何原本總共13卷,研究前六卷就可以了,因?yàn)楹筮叺亩际菓?yīng)用前邊的理論,應(yīng)用到具體的領(lǐng)域,無理數(shù),立體幾何等領(lǐng)域,幾何原本我認(rèn)為最精髓的就是合理的假設(shè),對(duì)點(diǎn)線面的抽象,這樣才得以使得后面的定理成立,其中第五個(gè)公設(shè)后來還被推翻了,以點(diǎn)線面作為基礎(chǔ),以歐幾里得工具作為工具,進(jìn)行了各種幾何現(xiàn)象的嚴(yán)密推理,我認(rèn)為這些定理成立的條件必須是在,對(duì)幾條哲學(xué)原則默許了之后,才能成立。主要是最簡(jiǎn)單的幾何形狀,從怎么畫出來,畫出來也是有根據(jù)的,再就是各種形狀的性質(zhì),以及各種形狀之間關(guān)系的定理,都是一步一步推理出來的。
在幾何原本后續(xù)的有阿波羅尼奧斯的《圓錐截線論》,牛頓的《自然哲學(xué)的數(shù)學(xué)原理》,算是比較系統(tǒng)的數(shù)學(xué)著作,也都是用歐幾里得工具進(jìn)行證明的,后來的微積分工具的出現(xiàn),我認(rèn)為是圓周率的求解過程,無限接近的思想,才使得微積分工具產(chǎn)生,現(xiàn)代數(shù)學(xué)看似陣容豪華,可是并沒有新的工具的出現(xiàn),只是對(duì)微積分工具在各個(gè)形狀上進(jìn)行應(yīng)用,數(shù)學(xué)主要是在空間上做文章,現(xiàn)在數(shù)學(xué)能干的活看似挺多,但是也要得益于物理學(xué)的發(fā)展,數(shù)學(xué)一方面往一般性方面發(fā)展,都忘了,細(xì)想數(shù)學(xué)思想是比較沒什么,只是腦力勞作比較大,特別是只是純數(shù)學(xué)研究,不做思想的人,很累也做不出有意義的工作。
看完二十世紀(jì)數(shù)學(xué)史,發(fā)現(xiàn)里面的人的著作,我一本也不想看,太虛。
幾何原本讀后感3《幾何原本》內(nèi)容簡(jiǎn)介:《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,集整個(gè)古希臘數(shù)學(xué)的成果與精神于一身。既是數(shù)學(xué)巨著,也是哲學(xué)巨著,并且第一次完成了人類對(duì)空間的認(rèn)識(shí)。該書自問世之日起,在長(zhǎng)達(dá)兩千多年的時(shí)間里,歷經(jīng)多次翻譯和修訂,自1482年第一個(gè)印刷本出版,至今已有一千多種不同版本。除《圣經(jīng)》之外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠與《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學(xué)家徐光啟于1607年合作完成的,但他們只譯出了前六卷。證實(shí)這個(gè)殘本斷定了中國(guó)現(xiàn)代數(shù)學(xué)的基本術(shù)語,諸如三角形、角、直角等。日本、印度等東方國(guó)家皆使用中國(guó)譯法,沿用至今。近百年來,雖然大陸的中學(xué)課本必提及這一偉大著作,但對(duì)中國(guó)讀者來說,卻無緣一睹它的全貌,納入家庭藏書更是妄想。徐光啟在譯此作時(shí),對(duì)該書有極高的評(píng)價(jià),他說:“能精此書者,無一事不可精;好學(xué)此書者,無一事不科學(xué)!爆F(xiàn)代科學(xué)的奠基者愛因斯坦更是認(rèn)為:如果歐幾里得未能激發(fā)起你少年時(shí)代的科學(xué)熱情,那你肯定不會(huì)是一個(gè)天才的科學(xué)家。由此可見,《幾何原本》對(duì)人們理性推演能力的影響,即對(duì)人的科學(xué)思想的影響是何等巨大。
幾何原本的讀后感,來自淘寶網(wǎng)的網(wǎng)友:幾何原本真的是一部很經(jīng)典的著作啊,手上的這本已經(jīng)翻得很舊了。準(zhǔn)備入手一本新的,正好遇到這個(gè)修訂版。希望翻譯質(zhì)量能夠更好,之前的版本總覺得有些地方譯得有些含糊。這本的包裝看上去也還不錯(cuò)。
幾何原本的讀后感,來自卓越網(wǎng)的網(wǎng)友:不愧是古希臘的數(shù)學(xué)家,推導(dǎo)能力太強(qiáng)了。里面對(duì)幾何問題的解析,對(duì)思維的培養(yǎng)幫助很大;尤其推薦給要學(xué)習(xí)平面幾何的學(xué)生作為補(bǔ)充讀物來讀,啟發(fā)會(huì)很大的。本來這種科學(xué)類的書,翻譯得不好的話,就會(huì)非常難懂,江蘇人民出版社最近出的幾本自然科學(xué)的書,翻譯倒是都還可以,像我這種非專業(yè)的,也能看明白。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。